Welcome to RealSeries’s documentation!¶
RealSeries is a comprehensive out-of-the-box Python toolkit for various tasks, including Anomaly Detection, Granger causality and Forecast with Uncertainty, of dealing with Time Series Datasets.
RealSeries has the following features:
Unified APIs, detailed documentation, easy-to-follow examples and straightforward visualizations.
All-levels of models, including simple thresholds, classification-based models, and deep (Bayesian) models.
Warning
RealSeries supports Python 3 ONLY. See here to check why.
API Demo:
RealSeries uses the sklearn-style API and is as easy as
1# train the SR-CNN detector
2from realseries.models.sr_2 import SR_CNN
3sr_cnn = SR_CNN(model_path)
4sr_cnn.fit(train_data)
5score = sr_cnn.detect(test_data, test_label)
Installation¶
RealSeries is still under development. Before the first stable release, you can install the RealSeries from source.
If you use RealSeries temporarily, you may clone the code from GitHub repository and add it to your Python path:
git clone https://github.com/xchuwenbo/realseries.git cd RealSeries # change current work directory to ./RealSeries python >>> import sys,os >>> sys.path.append(os.getcwd()) # add ./RealSeries to sys.path >>> import realseries >>> from realseries.models.iforest import IForest
Alternatively, you can install it:
git clone https://github.com/xchuwenbo/realseries.git # clone cd RealSeries pip install . python >>> import realseries >>> from realseries.models.iforest import IForest
Examples¶
IsolationForest Example¶
Full example: notebooks/lumino_rrcf.ipynb
Import models
import numpy as np from realseries.models.iforest import IForest # IsolationForest detector from realseries.utils.evaluation import point_metrics, adjust_predicts from realseries.utils.data import load_NAB from realseries.utils.visualize import plot_anom
Generate sample data with
realseries.utils.data.load_NAB()
:dirname = 'realKnownCause' filename = 'nyc_taxi.csv' # the fraction of used for test fraction=0.5 train_set, test_set = load_NAB(dirname, filename, fraction=fraction) # the last column is label; other columns are values train_data,train_label = train_set.iloc[:, :-1],train_set.iloc[:, -1] test_data,test_label = test_set.iloc[:, :-1],test_set.iloc[:, -1] # visualize test_data.plot()
Initialize a
realseries.models.iforest.IForest
detector, fit the model, and make the prediction.# train the isolation forest model # number of trees n_estimators=1000 # number of samples from the input array X for one estimator max_samples="auto" # the fraction of anomaly point in the total input sequence contamination=0.01 #random seed random_state=0 #build model IF = IForest(n_estimators=n_estimators, max_samples=max_samples, contamination=contamination, random_state=random_state) #train model IF.fit(train_data) # detect score = IF.detect(test_data)
Get anomaly label by setting threshold.
thres_percent=99.9 thres = np.percentile(score,thres_percent) pred_label = (score>thres)
Visualize and Evaluate the prediction result point to point.
# visualize plot_anom( test_set, pred_label, score) # evaluate and print the results precision, recall, f1, tp, tn, fp, fn = point_metrics(pred_label, test_label) print('precision:{}, recall:{}, f1:{}, tp:{}, tn:{}, fp:{}, fn:{}'.format( precision, recall, f1, tp, tn, fp, fn))
Visualize the prediction that is adjusted. Evaluate the adjusted results.
# evaluate and print the results delay = 200 # delay is the max number of delay points that allowed # when anomaly point occur. adjust_pred_label = adjust_predicts(pred_label,test_label,delay=200) plot_anom( test_set, adjust_pred_label, score) precision, recall, f1, tp, tn, fp, fn = point_metrics(adjust_pred_label, test_label) print('precision:{}, recall:{}, f1:{}, tp:{}, tn:{}, fp:{}, fn:{}'.format( precision, recall, f1, tp, tn, fp, fn))
Pytorch basded Neural Network Example¶
Full example: notebooks/lstm_dym.ipynb
Import models
import os import numpy as np from pathlib import Path from realseries.models.lstm_dynamic import LSTM_dynamic from realseries.utils.evaluation import point_metrics, adjust_predicts from realseries.utils.data import load_NAB from realseries.utils.visualize import plot_anom os.environ["CUDA_VISIBLE_DEVICES"] = '0' # set visible gpu
Generate sample data with
realseries.utils.data.load_NAB()
:dirname = 'realKnownCause' filename = 'nyc_taxi.csv' # the fraction of used for test fraction=0.5 train_set, test_set = load_NAB(dirname, filename, fraction=fraction) # the last column is label; other columns are values train_data,train_label = train_set.iloc[:, :-1],train_set.iloc[:, -1] test_data,test_label = test_set.iloc[:, :-1],test_set.iloc[:, -1] # visualize test_data.plot() from realseries.utils.preprocess import normalization train_data,test_data = normalization(train_data),normalization(test_data)
Initialize parameters.
# LSTM parameters # -------------------------- dropout = 0.3 lstm_batch_size = 64 hidden_size = 128 num_layers = 2 lr = 1e-3 epochs = 40 # data parameters # -------------------------- # time_window length of input data l_s = 50 # number of values to predict by input data n_predictions = 5 # error parameters # -------------------------- # number of values to evaluate in each batch in the prediction stage batch_size = 100 # window_size to use in error calculation window_size = 30 # determines window size used in EWMA smoothing (percentage of total values for channel) smoothing_perc = 0.05 # number of values surrounding an error that are brought into the sequence (promotes grouping on nearby sequences error_buffer = 20 # minimum percent decrease between max errors in anomalous sequences (used for pruning) p = 0.13
Initialize a
realseries.models.lstm_dynamic.LSTM_dynamic
detector, fit the model, and make the prediction.# build the model # -------------------------- # path to save model in Realseries/snapshot/..... model_path = Path('',f'../snapshot/lstm_dym/{filename[:-4]}') # init the model class lstm_dym = LSTM_dynamic( batch_size=batch_size, window_size=window_size, smoothing_perc=smoothing_perc, error_buffer=error_buffer, dropout=dropout, lstm_batch_size=lstm_batch_size, epochs=epochs, num_layers=num_layers, l_s=l_s, n_predictions=n_predictions, p=p, model_path=model_path, hidden_size=hidden_size, lr=lr) lstm_dym.fit(train_data) # detect anomaly_list, score_list = lstm_dym.detect(test_data) # create anomaly score array for ploting and evaluation pred_label = np.zeros(len(test_label)) score = np.zeros(len(test_label)) for (l, r), score_ in zip(anomaly_list, score_list): pred_label[l:r] = 1 score[l:r] = score_
Visualize and Evaluate the prediction result point to point.
# visualize plot_anom( test_set, pred_label, score) # evaluate and print the results precision, recall, f1, tp, tn, fp, fn = point_metrics(pred_label, test_label) print('precision:{}, recall:{}, f1:{}, tp:{}, tn:{}, fp:{}, fn:{}'.format( precision, recall, f1, tp, tn, fp, fn))
Visualize the prediction that is adjusted. Evaluate the adjusted results.
# evaluate and print the results delay = 200 # delay is the max number of delay points that allowed # when anomaly point occur. adjust_pred_label = adjust_predicts(pred_label,test_label,delay=200) plot_anom( test_set, adjust_pred_label, score) precision, recall, f1, tp, tn, fp, fn = point_metrics(adjust_pred_label, test_label) print('precision:{}, recall:{}, f1:{}, tp:{}, tn:{}, fp:{}, fn:{}'.format( precision, recall, f1, tp, tn, fp, fn))
Series and Label Visualize Example¶
Import models
import numpy as np from realseries.utils.data import load_NAB from realseries.utils.visualize import plot_anom,plot_mne
Generate sample data with
realseries.utils.data.load_NAB()
:dirname = 'realKnownCause' filename = 'nyc_taxi.csv' # the fraction of used for test fraction=0.5 train_set, test_set = load_NAB(dirname, filename, fraction=fraction) # the last column is label; other columns are values train_data,train_label = train_set.iloc[:, :-1],train_set.iloc[:, -1] test_data,test_label = test_set.iloc[:, :-1],test_set.iloc[:, -1]
Mne based visualize. The dataset
test_set
contains signals channel and label channel. The label is in the last channel. In order to make data and label channel shown in different colors, we set two kinds channle type bych_types=['eeg']*(num_chans-1) + ['ecg']
.The last channelecg
is different with otherseeg
. We also assign different colors aseeg='k', ecg='r'
. e.g.# the last column of test_set is label num_chans = test_set.shape[1] # modify scales according the shown figure, it can also # be set to scalings='auto' scalings = {'eeg': 1e4, 'ecg': 2} # assign colors for different channel types. color=dict(eeg='k', ecg='r') # the last channle is ecg and others are eeg channle ch_types=['eeg']*(num_chans-1) + ['ecg'] plot_mne(test_set, scalings=scalings, ch_types=ch_types, color=color)
More details in
realseries.utils.visualize.plot_mne()
.
Granger causality Example¶
Full example: notebooks/DWGC.ipynb, notebooks/GC.ipynb
Industrial demo¶
Import models
import sys,os import realseries import matplotlib as plt import numpy as np realseries.__file__ from realseries.models.base import BaseModel from realseries.models.NAR import NAR_Network from realseries.models.AR_new import AR_new from realseries.models.DWGC import DWGC from realseries.models.GC import GC from matplotlib import pyplot as plt from statsmodels.tsa.ar_model import AR from sklearn.metrics import mean_squared_error import pandas as pd import scipy.special import matplotlib.pyplot as plt import numpy as np from datetime import datetime import matplotlib.dates as mdates from scipy import stats import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import math import numpy as np
Import data and DWGC algorithm, the F_test result shows the window level causality.
model = NAR_Network(20,10,1,0.9) tempt1 = DWGC(1,model,0.8,'NAR',2,1) tempt2 = GC(1,model,'NAR',1) data = pd.read_csv("ensodata.csv",encoding = "ISO-8859-1", engine='python') data = data.values
Visualize the window-level causality. We find that DWGC method is more consistent with two prior conclusions than traditional GC method: 1. The causal relationship of ENSO to MKE/OLR is more obvious in autumn/winter than in spring/summer; 2 the causal relationship of MKE/OLR to ENSO exists in spring/summer.
fig = plt.figure() fig = plt.figure(figsize=(10,8)) ax1 = fig.add_subplot(411) tempt1.fit([data[0:50,0],data[0:50,2]]) F_test_win1 = tempt1.detect([data[0:50,0],data[0:50,2]]) F_test_win2 = tempt2.detect([data[0:50,0],data[0:50,2]]) x = np.linspace(4, 12,30) l1,=ax1.plot(x,F_test_win1) l2,=plt.plot((F_test_win2)) plt.xlim(4,12) ax1.legend(handles=[l1,l2], labels=[r'DWGC ',r'GC'], loc='upper left', fontsize=14) plt.title('causality ENSO to OLR',fontsize = 14) plt.xlabel('month',fontsize = 14) plt.ylabel(r'$F_{statistic}$',fontsize = 14) ax1.yaxis.get_major_formatter().set_powerlimits((0,1)) ax2 = fig.add_subplot(412) F_test_win1 = tempt1.detect([data[0:50,1],data[0:50,2]]) F_test_win2 = tempt2.detect([data[0:50,1],data[0:50,2]]) l1,=plt.plot(x,F_test_win1) l2,=plt.plot(F_test_win2) plt.xlim(4,12) plt.legend(handles=[l1,l2], labels=[r'DWGC ',r'GC'], loc='upper left', fontsize=14) plt.xlabel('month',fontsize = 14) plt.ylabel(r'$F_{statistic}$',fontsize = 14) ax2.yaxis.get_major_formatter().set_powerlimits((0,1)) plt.title('causality ENSO to MKE',fontsize = 14) ax3 = fig.add_subplot(413) F_test_win1 = tempt1.detect([data[0:50,2],data[0:50,0]]) F_test_win2 = tempt2.detect([data[0:50,2],data[0:50,0]]) l1,=plt.plot(x,F_test_win1) l2,=plt.plot(F_test_win2) plt.xlim(4,12) plt.legend(handles=[l1,l2], labels=[r'DWGC ',r'GC'], loc='upper left', fontsize=14) plt.xlabel('month', fontsize=14) plt.ylabel(r'$F_{statistic}$', fontsize=14) ax3.yaxis.get_major_formatter().set_powerlimits((0,1)) plt.title('causality OLR to ENSO', fontsize=14) fig.tight_layout() plt.subplots_adjust(wspace =1, hspace =1) ax4 = fig.add_subplot(414) F_test_win1 = tempt1.detect([data[0:50,2],data[0:50,1]]) F_test_win2 = tempt2.detect([data[0:50,2],data[0:50,1]]) plt.xlim(4,12) l1,=plt.plot(x,F_test_win1) l2,=plt.plot(F_test_win2) plt.legend(handles=[l1,l2], labels=[r'DWGC ',r'GC'], loc='upper left', fontsize=14) plt.xlabel('month', fontsize=14) plt.ylabel(r'$F_{statistic}$', fontsize=14) ax4.yaxis.get_major_formatter().set_powerlimits((0,1)) plt.title('causality MKE to ENSO', fontsize=14) # Compared with the traditional GC method, DWGC method can better fit two prior conclusions: # 1 The causality from ENSO to MKE/OLR is more obvious in autumn/winter than in spring/summer; # 2 The causality from MKE/OLR to ENSO exists in spring/suummer. plt.savefig('DWGC(GC)_ENSO.pdf')
Simulation demo¶
Preprocessing, import the data and models.
import sys,os import realseries import matplotlib as plt import numpy as np realseries.__file__ from realseries.models import iforest from realseries.models.base import BaseModel import matplotlib.pyplot as plt import numpy as np import pandas as pd from realseries.models.DWGC import DWGC from realseries.models.GC import GC import scipy.special data = pd.read_csv("AR_causal_point.csv",encoding = "ISO-8859-1", engine='python') data = data.values data = data[0:490,:] delay_input = 30 data2 = pd.read_csv("AR_series.csv",encoding = "ISO-8859-1", engine='python') data2 = data2.values data2 = data2[0:500,:] data_0 = scipy.special.expit(np.diff(data2[:,0])) data_1 = scipy.special.expit(np.diff(data2[:,1]))
Create a class to detect the window-level causality on NAR simulation series.
def experiment(win_length): stat_count_detect_DWGC = [] stat_count_detect_GC = [] #repeat the experiment for repeat in range(50): model = NAR_Network(delay_input,10,1,0.95) tempt = DWGC(win_length,model,0.9,'NAR',2,0.1) Ftest_win_DWGC = tempt.detect([data_0,data_1]) tempt = DWGC(win_length,model,1,'NAR',1,0.1) #GC is the special case of lr=1 in DWGC; Ftest_win_GC = tempt.detect([data_0,data_1]) count_real = 0 count_detect_DWGC = 0 count_whole_DWGC = 0 count_detect_GC = 0 count_whole_GC = 0 data_use = int((len(data_0)-delay_input)/win_length) * win_length win_num = int((len(data_0)-delay_input)/win_length) label_real = [0] *win_num label_detect_DWGC = [0] *win_num label_whole_DWGC = [0] *win_num label_detect_GC = [0] *win_num label_whole_GC = [0] *win_num for i in range(data_use-1): win_number = int((i)/win_length) if data[i,0] != 0.45: label_real[win_number] = 1 if Ftest_win_DWGC[win_number] > 1 or Ftest_win_DWGC[win_number] == 1 : label_detect_DWGC[win_number] = 1 if Ftest_win_DWGC[win_number]>1 or Ftest_win_DWGC[win_number] == 1: label_whole_DWGC[win_number] = 1 if np.mean(np.abs(np.array(Ftest_win_DWGC)-np.array([1]*len(Ftest_win_DWGC)))) > 0.1: stat_count_detect_DWGC.append(np.sum(label_detect_DWGC)) ''' else: stat_count_detect_DWGC.append(0.5 * np.sum(label_real)) ''' for i in range(data_use-1): win_number = int((i)/win_length) if data[i,0] != 0.45: if Ftest_win_GC[win_number] > 1 or Ftest_win_DWGC[win_number] == 1: label_detect_GC[win_number] = 1 if Ftest_win_GC[win_number]>1 or Ftest_win_DWGC[win_number] == 1: label_whole_GC[win_number] = 1 if np.mean(np.abs(np.array(Ftest_win_GC)-np.array([1]*len(Ftest_win_GC)))) > 0.1: stat_count_detect_GC.append(np.sum(label_detect_GC)) ''' else: stat_count_detect_GC.append(0.5 * np.sum(label_real)) ''' if repeat % 2 ==0: print("repeat:",repeat) ''' print("count_real:", np.sum(label_real)) print("count_detect_DWGC",np.sum(label_detect_DWGC)) print("count_whole_DWGC",np.sum(label_whole_DWGC)) print("count_detect_GC",np.sum(label_detect_GC)) print("count_whole_GC",np.sum(label_whole_GC)) ''' print("mean_stat_Ftest_win_DWGC:",np.mean(stat_count_detect_DWGC)/np.sum(label_real)) print("mean_stat_Ftest_win_GC:",np.mean(stat_count_detect_GC)/np.sum(label_real)) print("var_stat_Ftest_win_DWGC:",(np.var(stat_count_detect_DWGC))/(np.sum(label_real)*np.sum(label_real))) print("var_stat_Ftest_win_GC:",np.var(stat_count_detect_GC)/(np.sum(label_real)*np.sum(label_real))) return [np.mean(stat_count_detect_DWGC)/np.sum(label_real),np.mean(stat_count_detect_GC)/np.sum(label_real)]
Compute the accuracy/recall of DWGC/GC on different window length.
experiment(10) experiment(20) experiment(30) experiment(100)
datasets |
External |
GC |
DWGC |
|||
accuracy |
recall |
accuracy |
recall |
|||
NAR simulation |
window length=10 |
0.42 |
0.58 |
0.44 |
0.73 |
|
window length=20 |
0.76 |
0.65 |
0.80 |
0.65 |
||
window length=30 |
0.93 |
0.66 |
0.94 |
0.67 |
||
window length=100 |
1 |
0.86 |
1 |
0.88 |
VAE for anomaly detection Example¶
Full example: notebooks/donut_vae.ipynb
Import models
import numpy as np from realseries.models.vae_ad import VAE_AD # VAE anomaly detector from realseries.utils.evaluation import point_metrics, adjust_predicts from realseries.utils.data import load_NAB from realseries.utils.visualize import plot_anom
Generate sample data with
realseries.utils.data.load_NAB()
and standardize:dirname = 'realKnownCause' filename = 'nyc_taxi.csv' # the fraction of used for test fraction=0.5 train_data, test_data = load_NAB(dirname, filename, fraction=fraction) mean_ = train_data['value'].mean() std_ = train_data['value'].std() train_data['value'] = train_data['value'].apply(lambda x: (x - mean_) / std_) test_data['value'] = test_data['value'].apply(lambda x: (x - mean_) / std_)
Initialize a
realseries.models.vae_ad.VAE_AD
detector, fit the model, and make the prediction.# define the parameters num_epochs=256 batch_size=256 lr=1e-3 lr_decay=0.8 clip_norm_value=12.0 weight_decay=1e-3 data_split_rate=0.5 window_size=120 window_step=1 # vae network parameters h_dim=100 z_dim=5 #build model vae = VAE_AD(name='VAE_AD', num_epochs=num_epochs, batch_size=batch_size, lr=lr, lr_decay=lr_decay, clip_norm_value=clip_norm_value, weight_decay=weight_decay, data_split_rate=data_split_rate, window_size=window_size, window_step=window_step, h_dim=h_dim, z_dim=z_dim) #train model vae.fit(train_data['value'].values) # detect res = vae.detect(test_data['value'].values) ori_series = res['origin_series'] anomaly_score = res['score']
Get anomaly label by setting threshold.
k = 6 pred_label = (anomaly_score > np.std(anomaly_score) * k) test_set = test_data[window_size - 1:] test_label = test_set.iloc[:, -1]
Visualize and Evaluate the prediction result point to point.
# visualize plot_anom( test_set, pred_label, anomaly_score) # evaluate and print the results precision, recall, f1, tp, tn, fp, fn = point_metrics(pred_label, test_label) print('precision:{}, recall:{}, f1:{}, tp:{}, tn:{}, fp:{}, fn:{}'.format( precision, recall, f1, tp, tn, fp, fn))
Visualize the prediction that is adjusted. Evaluate the adjusted results.
# evaluate and print the results delay = 200 # delay is the max number of delay points that allowed # when anomaly point occur. adjust_pred_label = adjust_predicts(pred_label,test_label,delay=delay) plot_anom( test_set, adjust_pred_label, anomaly_score) precision, recall, f1, tp, tn, fp, fn = point_metrics(adjust_pred_label, test_label) print('precision:{}, recall:{}, f1:{}, tp:{}, tn:{}, fp:{}, fn:{}'.format( precision, recall, f1, tp, tn, fp, fn))
API Cheetsheet¶
Model¶
IsolationForest
realseries.models.iforest.IForest.fit()
: Fit Isolation Forest. y is ignored.realseries.models.iforest.IForest.detect()
: Predict the score of a sample being anomaly by the detector. The anomaly score is returned.
LSTM_dynamic
realseries.models.lstm_dynamic.LSTM_dynamic.fit()
: Fit LSTM model. y is ignored.realseries.models.lstm_dynamic.LSTM_dynamic.detect()
: Predict the score of a sample being anomaly by the dynamic method. The anomaly sequence and score is returned.
Luminol
realseries.models.lumino.Lumino.detect()
: Predict the score of a sample being anomaly by the detector. The anomaly score is returned.
Random cut forest
realseries.models.rcforest.RCForest.detect()
: Predict the score of a sample being anomaly by the detector. The anomaly score is returned.
LSTM encoder decoder
realseries.models.rnn.LSTMED.fit()
: Fit LSTM. y is ignored.realseries.models.rnn.LSTMED.detect()
: Predict the score of a sample being anomaly by the LSTM. The anomaly score is returned.
SeqVL
realseries.models.seqvl.SeqVL.fit()
: Fit detector. y is ignored in unsupervised methods.realseries.models.seqvl.SeqVL.detect()
: Predict the score of a sample being anomaly by the detector. The anomaly score is returned.
SR_CNN
realseries.models.srcnn.SR_CNN.fit()
: Fit CNN model.realseries.models.srcnn.SR_CNN.detect()
: Predict the score of a sample being anomaly by the CNN. The anomaly score is returned.
VAE_AD
realseries.models.vae_ad.VAE_AD.fit()
: Fit detector. y is ignored in unsupervised methods.realseries.models.vae_ad.VAE_AD.detect()
: Predict the score of a sample being anomaly by the detector. The anomaly score is returned.
STL
realseries.models.stl.STL.fit()
: Fit STL model. y is ignored in unsupervised methods.realseries.models.stl.STL.forecast()
: Forecast the later value of a sequence. The array is returned.
Granger Causality
realseries.models.GC.GC.detect()
: Granger Causality detector, which is channel-level.realseries.models.DWGC.DWGC.detect()
: Dynamic Window-level Granger Causality detector.
See base class definition in realseries.models.base
.
Data¶
The following functions are used for raw data loading easily.
realseries.utils.data.load_NAB()
: Load data in the NAB_data diary. Train DataFrame and Test DataFrame with labels are returned.realseries.utils.data.load_Yahoo()
: Load data in the Yahoo_data diary. Train DataFrame and Test DataFrame with labels are returned.realseries.utils.data.load_split_NASA()
: Load data in the NASA diary. Train DataFrame and Test DataFrame with labels are returned.
Visualize¶
The following functions are used plotting raw data and predicted result.
realseries.utils.visualize.plot_anom()
: The parameters mainly includepd_data_label
,pred_anom
andpred_score
.pd_data_label
is thepandas.DataFrame()
with data and label,pred_anom
is the array with predicted label, andpred_score
is the corresponding anomaly score.realseries.utils.visualize.plot_mne()
: The parameters mainly includeX, scalings, ch_types, color
. IfX
is the array and last column as label. We set label column to differentch_type
, so it will show different color in the figure.
API Reference¶
All Models¶
realseries.models.AR module¶
Created on Sun Apr 19 22:34:04 2020
@author: zhihengzhang
- class realseries.models.AR.AR(lag)¶
Bases:
realseries.models.base.BaseModel
- Parameters
lag – the time lag in AR model
- X_train¶
training data in AR model.
- Y_train¶
training label in AR model.
- detect(X)¶
- Parameters
X – time series(dimension is 1 or 2)
y – The default is None.
- Returns
the fitting result of training data.
- Return type
detection
- fit(X, y=None)¶
- Parameters
X – time series(dimension is 1 or 2)
y – The default is None.
- Returns
None.
realseries.models.DWGC module¶
Created on Fri Apr 17 11:57:41 2020
@author: zhihengzhang
- class realseries.models.DWGC.DWGC(win_len, model, index_lr, method, count, train_rate)¶
Bases:
realseries.models.base.BaseModel
Dynamic-window-level Granger Causality method, try to find the window-level causality on each channel pair.
- Args:
win_len: window length model:AR or NAR index_lr: leanring rate of causal-indexing coefficients method: option of fitting method, ‘NAR’/’AR’
- Attributes:
causal_index : causal-indexing coefficients single_error1/single_error2 : the fitting error without other channel’s dimension double_error: the fitting error with other channel’s dimension
- detect(X)¶
- Parameters
X – the pair of time series
- Returns
the causality on window-level
- Return type
Ftest_win
- fit(X, y=None)¶
Fit the model
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
y (ndarray, optional) – Ignored. Defaults to None.
realseries.models.GC module¶
Created on Thu Apr 16 11:07:05 2020
@author: zhihengzhang
- class realseries.models.GC.GC(win_len, model, method, train_rate)¶
Bases:
realseries.models.base.BaseModel
- Parameters
win_len – window length
model – ‘AR’ or ‘NAR-network’
method – option of fitting method, ‘NAR’/’AR’
- -- single_error
the fitting error without other channel’s dimension
- -- double_error
the fitting error with other channel’s dimension
- detect(X)¶
- Parameters
X – time series pair
- Returns
window-level causality
- Return type
Ftest_win
- fit(X, y=None)¶
Fit the model
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
y (ndarray, optional) – Ignored. Defaults to None.
realseries.models.NAR module¶
Created on Tue Apr 14 16:36:45 2020
@author: studyzzh
- class realseries.models.NAR.NAR_Network(inputnodes, hiddennodes, outputnodes, learningrate)¶
Bases:
realseries.models.base.BaseModel
- Parameters
inputnodes (--) – the number of nodes in input layer.
hiddennodes (--) – the number of nodes in hidden layer.
outputnodes (--) – the number of nodes in outout layer.
rate (-- learning) – the learning rate of NAR model.
- -- fit_X
the fitting results on training data.
- detect(X)¶
- Parameters
X – the input time series in shape of (,1) or (,2)
y – The default is None.
- Returns
the fitting errors on training data
- Return type
output_errors
- fit(X, y=None)¶
- Parameters
X – the input time series in shape of (,1) or (,2)
y – The default is None.
realseries.models.base module¶
Base class for all time series analysis methods. It includes the methods like fit, detect and predict etc.
- class realseries.models.base.BaseModel(contamination=0.1)¶
Bases:
object
BaseModel class for all RealSeries predict/detect algorithms.
- Parameters
contamination (float, optional) – The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the decision function.. Defaults to 0.1.
- Raises
ValueError – Contamination must be in (0, 0.5].
- abstract detect(x)¶
Predict using the trained detector.
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
- Returns
Outlier labels of shape (n_length,).For each sample of time series, whether or not it is an outlier. 0 for inliers and 1 for outliers.
- Return type
ndarray
- abstract fit(x, y=None)¶
Fit the model
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
y (ndarray, optional) – Ignored. Defaults to None.
- forecast(x, t)¶
Forecast the input.
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
t (int) – time index of to-be-forecast samples.
- Returns
Forecast samples of shape (n_length, n_features)
- Return type
X_1 (ndarray)
- impute(x, t)¶
Impute the input data X at time index t.
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
t (int) – time index of to-be-forecast samples.
- Returns
Impute samples of shape (n_length, n_features)
- Return type
X_1 (ndarray)
- load(path)¶
Load the model from path
- Parameters
path (string) – model load path
- save(path)¶
Save the model to path
- Parameters
path (string) – model save path
realseries.models.iforest module¶
The implementation of isolation forest method based on sklearn.
- class realseries.models.iforest.IForest(n_estimators=100, max_samples='auto', contamination='auto', max_features=1.0, bootstrap=False, n_jobs=1, random_state=None, verbose=0)¶
Bases:
realseries.models.base.BaseModel
Isolation forest algorithm.
The IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature.
- Parameters
n_estimators (int, optional) – The number of base estimators in the ensemble. Defaults to 100.
max_samples (int or float, optional) –
The number of samples to draw from X to train each base estimator. Defaults to “auto”.
If int, then draw max_samples samples.
If float, then draw max_samples * X.shape[0] samples.
If “auto”, then max_samples=min(256, n_samples).
If max_samples is larger than the number of samples provided, all samples will be used for all trees (no sampling).
contamination ('auto' or float, optional) – The amount of contamination of the data set. Defaults to ‘auto’.
max_features (int or float, optional) – The number of features to draw from X to train each base estimator. Defaults to 1.
bootstrap (bool, optional) – If True, individual trees are fit on random subsets of the training data sampled with replacement. If False, sampling without replacement is performed. Defaults to False.
n_jobs (int, optional) – The number of jobs to run in parallel. Defaults to 1.
random_state (int, optional) – If RandomState instance, random_state is the random number generator. If None, the random number generator is the RandomState instance used by np.random. Defaults to 0.
verbose (int, optional) – Controls the verbosity of the tree building process. Defaults to None.
- anomaly_score¶
Array of anomaly score.
- IF¶
The isolation model.
- estimators_¶
List of DecisionTreeClassifier.The collection of fitted sub-estimators.
- estimators_samples_¶
List of arrays.The subset of drawn samples (i.e., the in-bag samples) for each base estimator.
- max_samples_¶
The actual number of samples
- detect(X)¶
Detect the test data by trained model.
- Parameters
X (array_like) – The input sequence with shape (n_sample, n_features).
- Returns
The predicted anomaly score.
- Return type
ndarray
- property estimators_¶
The collection of fitted sub-estimators. Decorator for scikit-learn Isolation Forest attributes.
- property estimators_samples_¶
The subset of drawn samples (i.e., the in-bag samples) for each base estimator. Decorator for scikit-learn Isolation Forest attributes.
- fit(X, y=None)¶
Train the model.
- Parameters
X (array_like) – The input sequence with shape (n_sample, n_features).
y (ndarray, optional) – The label. Defaults to None.
- property max_samples_¶
The actual number of samples. Decorator for scikit-learn Isolation Forest attributes.
realseries.models.lstm_dynamic module¶
The lstm danamic threshold method is the implentation of paper ‘Detecting Spacecraft Anomalies Using LSTMs andNonparametric Dynamic Thresholding’
- class realseries.models.lstm_dynamic.LSTM_dynamic(hidden_size=128, model_path='./model', dropout=0.3, lr=0.001, lstm_batch_size=100, epochs=50, num_layers=2, l_s=120, n_predictions=10, batch_size=32, window_size=50, smoothing_perc=0.2, error_buffer=50, p=0.1)¶
Bases:
realseries.models.base.BaseModel
LSTM Dynamic method.
- Parameters
hidden_size (int, optional) – Hidden size of LSTM. Defaults to 128.
model_path (str, optional) – Path for saving and loading model. Defaults to ‘./model’.
dropout (float, optional) – Dropout rate. Defaults to 0.3.
lr (float, optional) – Learning rate. Defaults to 1e-3.
lstm_batch_size (int, optional) – Batch size of training LSTM. Defaults to 100.
epochs (int, optional) – Epochs of training. Defaults to 50.
num_layers (int, optional) – Number of LSTM layer. Defaults to 2.
l_s (int, optional) – Length of the input sequence for LSTM. Defaults to 120.
n_predictions (int, optional) – Number of values to predict by input sequence. Defaults to 10.
batch_size (int, optional) – Number of values to evaluate in each batch in the prediction stage. Defaults to 32.
window_size (int, optional) – Window_size to use in error calculation. Defaults to 50.
smoothing_perc (float, optional) – Percentage of total values used in EWMA smoothing. Defaults to 0.2.
error_buffer (int, optional) – Number of values surrounding an error that are brought into the sequence. Defaults to 50.
p (float, optional) – Minimum percent decrease between max errors in anomalous sequences (used for pruning). Defaults to 0.1.
- model¶
The LSTM model.
- y_test¶
The origin data for calculate error.
- y_hat¶
The predicted data.
- detect(X, smoothed=True)¶
Get anomaly score of input sequence.
- Parameters
X (array_like) – Input sequence.
smoothed (bool, optional) – Whether to smooth the errors by EWMA. Defaults to True.
- Returns
(error_seq, error_seq_scores).The error_seq is list that stand the anomaly duration. The error_seq_scores is the corresponding anomaly score.
- Return type
tuple
- fit(X, split=0.25, monitor='val_loss', patience=10, delta=0, verbose=True)¶
Train the LSTM model.
- Parameters
X (arrar_like) – The 2-D input sequence with shape (n_samples, n_features)
split (float, optional) – Fration to split for validation set. Defaults to 0.25.
monitor (str, optional) – Monitor the validation loss by setting the monitor argument to ‘val_loss’. Defaults to ‘val_loss’.
patience (int, optional) – Patience argument represents the number of epochs before stopping once your loss starts to increase (stops improving). Defaults to 10.
delta (int, optional) – A threshold to whether quantify a loss at some epoch as improvement or not. If the difference of loss is below delta, it is quantified as no improvement. Better to leave it as 0 since we’re interested in when loss becomes worse. Defaults to 0.
verbose (bool, optional) – Verbose decides what to print. Defaults to True.
- static obtain_anomaly(y_test, y_hat, batch_size, window_size, smoothing_perc, p, l_s, error_buffer, smoothed=True)¶
Obtain anomaly from the origin sequence and reconstructed sequence y_hat.
- Parameters
y_test (ndarray) – The origin 1-D signals array of test targets corresponding to true values to be predicted at end of each window.
y_hat (ndarray) – The predicted 1-D sequence y_hat for each timestep in y_test
batch_size (int, optional) – Number of values to evaluate in each batch in the prediction stage. Defaults to 32.
window_size (int, optional) – Window_size to use in error calculation. Defaults to 50.
smoothing_perc (float, optional) – Percentage of total values used in EWMA smoothing. Defaults to 0.2.
error_buffer (int, optional) – Number of values surrounding an error that are brought into the sequence. Defaults to 50.
p (float, optional) – Minimum percent decrease between max errors in anomalous sequences (used for pruning). Defaults to 0.1.
l_s (int, optional) – Length of the input sequence for LSTM. Defaults to 120.
smoothed (bool, optional) – Whether to smooth the errors by EWMA. Defaults to True.
- Returns
(error_seq, error_seq_scores)
- Return type
tuple
- predict(X)¶
Predict the reconstructed output array y_hat.
- Parameters
X (array_like) – The input 2-D array.
- Raises
ValueError – Num_batches less than 0.
- Returns
The predicted array of lstm_encoder_decoder.
- Return type
ndarray
realseries.models.lumino module¶
The implementation of luminol method. Reference: https://github.com/linkedin/luminol
- class realseries.models.lumino.Lumino¶
Bases:
realseries.models.base.BaseModel
- detect(X, algorithm_name=None, algorithm_params=None)¶
Detect the input sequence and return anomaly socre.
- Parameters
X (array_like) – 1-D time series with shape (n_samples,)
algorithm_name (str, optional) – Algorithm_name. Defaults to None.
algorithm_params (dict, optional) –
Algorithm_params. Defaults to None. The algorithm_name and the corresponding algorithm_params are:
11. 'bitmap_detector': # behaves well for huge data sets, and it is the default detector. 2 { 3 'precision'(4): # how many sections to categorize values, 4 'lag_window_size'(2% of the series length): # lagging window size, 5 'future_window_size'(2% of the series length): # future window size, 6 'chunk_size'(2): # chunk size. 7 } 82. 'default_detector': # used when other algorithms fails, not meant to be explicitly used. 93. 'derivative_detector': # meant to be used when abrupt changes of value are of main interest. 10 { 11 'smoothing factor'(0.2): # smoothing factor used to compute exponential moving averages 12 # of derivatives. 13 } 144. 'exp_avg_detector': # meant to be used when values are in a roughly stationary range. 15 # and it is the default refine algorithm. 16 { 17 'smoothing factor'(0.2): # smoothing factor used to compute exponential moving averages. 18 'lag_window_size'(20% of the series length): # lagging window size. 19 'use_lag_window'(False): # if asserted, a lagging window of size lag_window_size will be used. 20 }
- Returns
Normalized anomaly score in [0,1].
- Return type
ndarray
- fit()¶
Fit the model
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
y (ndarray, optional) – Ignored. Defaults to None.
realseries.models.rcforest module¶
The implementation of random cur forest method. Reference: S. Guha, N. Mishra, G. Roy, & O. Schrijvers, Robust random cut forest based anomaly detection on streams, in Proceedings of the 33rd International conference on machine learning, New York, NY, 2016 (pp. 2712-2721). https://github.com/kLabUM/rrcf
- class realseries.models.rcforest.RCForest(shingle_size=32, num_trees=100, tree_size=50, random_state=0)¶
Bases:
realseries.models.base.BaseModel
Random cut forest.The Robust Random Cut Forest (RRCF) algorithm is an ensemble method for detecting outliers in streaming data. RRCF offers a number of features that many competing anomaly detection algorithms lack. Specifically, RRCF:
Is designed to handle streaming data.
Performs well on high-dimensional data.
Reduces the influence of irrelevant dimensions.
Gracefully handles duplicates and near-duplicates that could otherwise mask the presence of outliers.
Features an anomaly-scoring algorithm with a clear underlying statistical meaning.
- Parameters
shingle_size (int, optional) – Window size. Defaults to 32.
num_trees (int, optional) – Number of estimators. Defaults to 100.
tree_size (int, optional) – Number of leaf. Defaults to 50.
random_state (int, optional) – Random state seed. Defaults to None.
- detect(X)¶
Detect the input.
- Parameters
X (array_like) – Input sequence.
- Returns
Anomaly score.
- Return type
ndarray
- fit(X, y=None)¶
Fit the model
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
y (ndarray, optional) – Ignored. Defaults to None.
realseries.models.rnn module¶
RNN encoder decoder model. Reference ‘LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection’
- class realseries.models.rnn.LSTMED(rnn_type='LSTM', emsize=128, nhid=128, epochs=200, nlayers=2, batch_size=64, window_size=50, dropout=0.2, lr=0.0002, weight_decay=0.0001, clip=10, res_connection=False, prediction_window_size=10, model_path=None, seed=1111)¶
Bases:
realseries.models.base.BaseModel
RNN(LSTM) encoder decoder model for anomaly detection.
- Parameters
rnn_type (str, optional) – Type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU, SRU). Defaults to ‘LSTM’.
emsize (int, optional) – Size of rnn input features. Defaults to 128.
nhid (int, optional) – Number of hidden units per layer. Defaults to 128.
epochs (int, optional) – Upper epoch limit. Defaults to 200.
nlayers (int, optional) – Number of LSTM layers. Defaults to 2.
batch_size (int, optional) – Batch size. Defaults to 64.
window_size (int, optional) – LSTM input sequence length. Defaults to 50.
dropout (float, optional) – Defaults to 0.2.
lr (float, optional) – Learning rate. Defaults to 0.0002.
weight_decay (float, optional) – Weight decay. Defaults to 1e-4.
clip (int, optional) – Gradient clipping. Defaults to 10.
res_connection (bool, optional) – Residual connection. This parameters has not been tested when setting True. Defaults to False.
prediction_window_size (int, optional) – Prediction window size. Defaults to 10.
model_path (str, optional) – The path to save or load model. Defaults to None.
seed (int, optional) – Seed. Defaults to 1111.
- model¶
LSTM model.
- detect(X, channel_idx=0)¶
- If X is an array of shape (n_samples, n_features), it need to be
detected one by one channel.
- Parameters
X (array_like) – Input sequence.
channel_idx (int, optional) – The index of feature cahnnel to detect.
0. (Defaults to) –
- Returns
Anomaly score
- Return type
ndarray
- fit(X, y=None, augment_length=None, split=0.25, monitor='val_loss', patience=10, delta=0, verbose=True)¶
Train the detector.
- Parameters
X (array_like) – The input sequence of shape (n_length,).
y (array_like, optional) – Ignored. Defaults to None.
augment_length (int, optional) – The total number of samples after augmented. Defaults to None.
split (float, optional) – Fration to split for validation set. Defaults to 0.25.
monitor (str, optional) – Monitor the validation loss by setting the monitor argument to ‘val_loss’. Defaults to ‘val_loss’.
patience (int, optional) – Patience argument represents the number of epochs before stopping once your loss starts to increase (stops improving). Defaults to 10.
delta (int, optional) – A threshold to whether quantify a loss at some epoch as improvement or not. If the difference of loss is below delta, it is quantified as no improvement. Better to leave it as 0 since we’re interested in when loss becomes worse. Defaults to 0.
verbose (bool, optional) – Verbose decides what to print. Defaults to True.
realseries.models.seqvl module¶
Introduction of seqvl.
- class realseries.models.seqvl.SeqVL(contamination=0.1, name='SeqVL', num_epochs=250, batch_size=1, lr=0.001, lr_decay=0.8, lamb=10, clip_norm_value=12.0, data_split_rate=0.5, window_size=30, window_count=300, h_dim=24, z_dim=5, l_h_dim=24)¶
Bases:
realseries.models.base.BaseModel
- detect(X, thres)¶
Detect the data by trained model.
- Parameters
X (array_like) – 1-D time series with length L.
thres (float) – Threshold.
- Returns
- Dict containing results. 0-1 sequence indicates whether the last point of a window is
an anomaly. length: L - window_size + 1
- Return type
dict
- fit(X)¶
Train the model.
- Parameters
X (array_like) – Input sequence.
- reshape_for_test(X)¶
Reshape the data gor test.
- Parameters
X (array_like) – Input data.
- Returns
Reshaped data.
- Return type
ndarray
- reshape_for_training(X)¶
Reshape the data for training.
- Parameters
X (ndarray) – 1-D time series
- Returns
- input with shape [-1, window_count, window_size],
label with shape [-1, window_count]
- Return type
tuple
realseries.models.sr module¶
- class realseries.models.sr.SpectralResidual(series, threshold, mag_window, score_window)¶
Bases:
realseries.models.base.BaseModel
SpectralResidual calss.
- Parameters
series – input time series with shape (n_sample,)
threshold – the threshold that apply anomaly score
mag_window – the window of avarage filter when calculating spectral mag
score_window – the window of average filter when calculating score
- detect()¶
Predict using the trained detector.
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
- Returns
Outlier labels of shape (n_length,).For each sample of time series, whether or not it is an outlier. 0 for inliers and 1 for outliers.
- Return type
ndarray
- static extend_series(values, extend_num=5, look_ahead=5)¶
extend the array data by the predicted next value
- Parameters
values (ndarray) – array of float numbers.
extend_num (int, optional) – number of values added to the back of data. Defaults to 5.
look_ahead (int, optional) – number of previous values used in prediction. Defaults to 5.
- Raises
ValueError – the parameter ‘look_ahead’ must be at least 1
- Returns
The result array.
- Return type
ndarray
- fit()¶
Fit the model
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
y (ndarray, optional) – Ignored. Defaults to None.
- generate_spectral_score(series)¶
- static predict_next(values)¶
Predicts the next value by sum up the slope of the last value with previous values.
Mathematically, \(g = 1/m * \sum_{i=1}^{m} g(x_n, x_{n-i})\), \(x_{n+1} = x_{n-m+1} + g * m\), where \(g(x_i,x_j) = (x_i - x_j) / (i - j)\).
- Parameters
values (list) – a list of float numbers.
- Raises
ValueError – Length lsit should at least 2.
- Returns
The predicted next value.
- Return type
float
- spectral_residual_transform(values)¶
Transform a time series into spectral residual series by FFT.
- Parameters
values (ndarray) – Array of values.
- Returns
Spectral residual values.
- Return type
ndarray
realseries.models.srcnn module¶
- class realseries.models.srcnn.SR_CNN(model_path, window=128, lr=1e-06, seed=0, epochs=20, batch_size=64, dropout=0.2, num_worker=0)¶
Bases:
realseries.models.base.BaseModel
The sali_map method for anomaly detection.
- Parameters
model_path (str, optional) – Path for saving and loading model.
window (int, optional) – Length of each sample for input. Defaults to 128.
lr (float, optional) – Learning rate. Defaults to 1e-6.
seed (int, optional) – Random seed. Defaults to 0.
epochs (int, optional) – Defaults to 20.
batch_size (int, optional) – Defaults to 64.
dropout (float, optional) – Defaults to 0.2.
num_worker (int, optional) – Defaults to 0.
- model¶
CNN model built by torch.
- detect(X, y, back_k=0, backaddnum=5, step=1)¶
Get anomaly score of input sequence.
- Parameters
X (array_like) – Input sequence.
y – Ignored.
back_k (int, optional) – Not test. Defaults to 0.
backaddnum (int, optional) – Not test. Defaults to 5.
step (int, optional) – Stride of sliding window in detecing stage. Defaults to 1.
- Returns
Anomaly score.
- Return type
ndarray
- fit(X, step=64, num=10, back_k=0)¶
Train the model
- Parameters
X (array_like) – The input 1-D array.
step (int, optional) – Stride of sliding window. Defaults to 64.
num (int, optional) – Number of added anomaly points to each window. Defaults to 10.
back_k (int, optional) – Defaults to 0.
realseries.models.stl module¶
- class realseries.models.stl.STL¶
Bases:
realseries.models.base.BaseModel
- static calc_seasonal(detrended, period)¶
Calculate seasonal from detrended data.
- Parameters
detrended (ndarray) – Input detrended data.
period (float or int) – The period of data.
- Returns
The seasonal and the period_averages.
- Return type
(ndarray, ndarray)
- static calc_trend(observed, lo_frac=0.6, lo_delta=0.01)¶
calculate trend from observed data.
- Parameters
observed (ndarray) – Input array.
lo_frac (float, optional) – Defaults to 0.6.
lo_delta (float, optional) – Defaults to 0.01.
- Returns
The trend.
- Return type
ndarray
- detect()¶
Predict using the trained detector.
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
- Returns
Outlier labels of shape (n_length,).For each sample of time series, whether or not it is an outlier. 0 for inliers and 1 for outliers.
- Return type
ndarray
- static drift(data, n=3)¶
- The drift forecast for the next point is a linear extrapolation from
the previous n points in the series.
- Parameters
data (ndrray) – Observed data, presumed to be ordered in time.
n (int) – period over which to calculate linear model for extrapolation.
- Returns
a single-valued forecast for the next value in the series.
- Return type
float
- fit(df, period=365, lo_frac=0.6, lo_delta=0.01)¶
Train the STL decompose model.Y[t] = T[t] + S[t] + e[t]
- Parameters
df (DataFrame) – Input data.
period (int, optional) – Defaults to 365.
lo_frac (float, optional) – Defaults to 0.6.
lo_delta (float, optional) – Defaults to 0.01.
- Returns
Dict results.
- Return type
dict
- forecast(stl, forecast_func='drift', steps=10, seasonal=False)¶
Forecast the given decomposition
stl
forward bysteps
- Parameters
stl (object) – STL object.
forecast_func (str, optional) – Defaults to ‘drift’.
steps (int, optional) – Defaults to 10.
seasonal (bool, optional) – Defaults to False.
- Returns
forecast dataframe
- Return type
DataFrame
- static mean(data, n=3)¶
- static naive(data, n=7)¶
realseries.models.vae_ad module¶
- class realseries.models.vae_ad.VAE_AD(name='VAE_AD', num_epochs=256, batch_size=256, lr=0.001, lr_decay=0.8, clip_norm_value=12.0, weight_decay=0.001, data_split_rate=0.5, window_size=120, window_step=1, h_dim=100, z_dim=5)¶
Bases:
realseries.models.base.BaseModel
The Donut-VAE version for anomaly detection
- Parameters
name (str, optional) – Model name. Defaults to ‘VAE_AD’.
num_epochs (int, optional) – Epochs for model training. Defaults to 256.
batch_size (int, optional) – Batch size for model training. Defaults to 256.
lr ([type], optional) – Learning rate. Defaults to 1e-3.
lr_decay (float, optional) – Learning rate decay. Defaults to 0.8.
clip_norm_value (float, optional) – Gradient clip value. Defaults to 12.0.
weight_decay ([type], optional) – L2 regularization. Defaults to 1e-3.
data_split_rate (float, optional) – Defaults to 0.5.
window_size (int, optional) – Defaults to 120.
window_step (int, optional) – Defaults to 1.
h_dim (int, optional) – Hidden dim between x and z for VAE’s encoder and decoder Defaults to 100.
z_dim (int, optional) – Defaults to 5.
- model¶
VAE model built by torch.
- detect(X)¶
Get anomaly score of input sequence.
- Parameters
X (array_like) – Input sequence.
- Returns
origin_series: ndarray, Origin time series score: ndarray, Corresponding anomaly score.
- Return type
A dict with attributes
- fit(X)¶
Train the model
- Parameters
X (array_like) – The input 1-D array.
- forecast(X)¶
Forecast the input.
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
t (int) – time index of to-be-forecast samples.
- Returns
Forecast samples of shape (n_length, n_features)
- Return type
X_1 (ndarray)
- load(path)¶
Load the model from path
- Parameters
path (string) – model load path
- predict(X)¶
- save(path)¶
Save the model to path
- Parameters
path (string) – model save path
realseries.models.vae_dense module¶
- class realseries.models.vae_dense.VAE_Dense(window_size, channels, name='VAE_Dense', num_epochs=256, batch_size=64, lr=0.001, lr_decay=0.8, clip_norm_value=12.0, weight_decay=0.001, h_dim=200, z_dim=20)¶
Bases:
realseries.models.base.BaseModel
The Donut-VAE version for anomaly detection
- Parameters
window_size (int) –
channels (int) – Channel count of the input signals.
name (str, optional) – Model name. Defaults to ‘VAE_Dense’.
num_epochs (int, optional) – Epochs for model training. Defaults to 256.
batch_size (int, optional) – Batch size for model training. Defaults to 256.
lr ([type], optional) – Learning rate. Defaults to 1e-3.
lr_decay (float, optional) – Learning rate decay. Defaults to 0.8.
clip_norm_value (float, optional) – Gradient clip value. Defaults to 12.0.
weight_decay ([type], optional) – L2 regularization. Defaults to 1e-3.
h_dim (int, optional) – Hidden dim between x and z for VAE’s encoder and decoder Defaults to 200.
z_dim (int, optional) – Defaults to 20.
- model¶
VAE model built by torch.
- detect(X)¶
Get anomaly score of input sequence.
- Parameters
X (array_like) – Input sequence.
- Returns
origin_series: ndarray [timesteps, channels], Origin time series recon_series: ndarray [timesteps, channels], Reconstruct time series score: ndarray [timesteps, channels], Corresponding anomaly score.
- Return type
A dict with attributes
- fit(X)¶
Train the model
- Parameters
X (array_like) – The input 2-D array. The first dimension denotes timesteps. The second dimension denotes the signal channels.
- flatten(x)¶
- forecast(X)¶
Forecast the input.
- Parameters
x (array_like) – The input sequence of shape (n_length, n_features) or (n_length,).
t (int) – time index of to-be-forecast samples.
- Returns
Forecast samples of shape (n_length, n_features)
- Return type
X_1 (ndarray)
- load(path)¶
Load the model from path
- Parameters
path (string) – model load path
- predict(X)¶
- reform(x)¶
- save(path)¶
Save the model to path
- Parameters
path (string) – model save path
realseries.models.crmmd module¶
The crmmd is the implentation of paper ‘Calibrated Reliable Regression using Maximum Mean Discrepancy’ https://arxiv.org/abs/2006.10255
- class realseries.models.crmmd.CRMMD(kernel_type='LSTM', input_size=128, hidden_sizes=[128, 64], prediction_window_size=1, activation='tanh', dropout_rate=0.2, variance=True, lr=0.0002, weight_decay=0.001, grad_clip=10, epochs_hnn=400, epochs_mmd=100, batch_size=1024, window_size=15, model_path='./model', seed=1111)¶
Bases:
realseries.models.base.BaseModel
HNN forecaster for uncertainty prediction.
- Parameters
kernel_type (str, optional) – Type of recurrent net (RNN, LSTM, GRU). Defaults to ‘LSTM’.
input_size (int, optional) – Size of rnn input features. Defaults to 128.
hidden_sizes (list, optional) – Number of hidden units per layer. Defaults to [128,64].
prediction_window_size (int, optional) – Prediction window size. Defaults to 1.
activation (str,optional) – The activation func to use. Can be either
'tanh'
or'relu'
. Default:'relu'
dropout_rate (float, optional) – Defaults to 0.2.
variance (bool, optional) – Whether to add a variance item at the last layer to indicate uncertainty. Default to True
lr (float, optional) – Learning rate. Defaults to 0.0002.
weight_decay (float, optional) – Weight decay. Defaults to 1e-4.
grad_clip (int, optional) – Gradient clipping. Defaults to 10.
epochs_hnn (int, optional) – Upper epoch limit for the first training phase (HNN). Defaults to 200.
epochs_mmd (int, optional) – Upper epoch limit for the second training phase (MMD). Defaults to 200.
batch_size (int, optional) – Batch size. Defaults to 1024.
window_size (int, optional) – LSTM input sequence length. Defaults to 15.
model_path (str, optional) – The path to save or load model. Defaults to ‘./model’.
seed (int, optional) – Seed. Defaults to 1111.
- model¶
HNN model.
- evaluation_model(scaler, test_data, test_label, t=1, confidence=95)¶
Get predictive intervals and evaluation scores.
- Parameters
scaler – receive the scaler of data loader
test_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
test_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
t (optional, int) – the forecasting horizon, default to 1
confidence (optional, int) – the confidence of predictive intervals. Default to 95, output 95% predictive intervals.
- Returns
the lower bound and the upper bound arrays of the predictive intervals for test data. rmse (float): the rmse score calibration error (float): the uncertainty evaluation score for test data.
- Return type
PIs (two numpy arrays)
- fit(train_data, train_label, val_data, val_label, patience=50, delta=0, verbose=True)¶
Train the LSTM model.
- Parameters
train_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
train_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
val_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
val_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
patience (int, optional) – Patience argument represents the number of epochs before stopping once your loss starts to increase (stops improving). Defaults to 10.
delta (int, optional) – A threshold to whether quantify a loss at some epoch as improvement or not. If the difference of loss is below delta, it is quantified as no improvement. Better to leave it as 0 since we’re interested in when loss becomes worse. Defaults to 0.
verbose (bool, optional) – Verbose decides what to print. Defaults to True.
- model¶
a trained model to save to model_path/checkpoint.pt.
- forecast(scaler, test_data, t=1, confidence=95, is_uncertainty=True)¶
Get predictive intervals and evaluation scores.
- Parameters
scaler – receive the scaler of data loader
test_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
t (optional, int) – the forecasting horizon, default to 1
confidence (optional, int) – the confidence of predictive intervals. Default to 95, output 95% predictive intervals.
is_uncertainty (optional, bool) – whether to get uncertainty, if true, outputing PIs, if false, outputing means. Defaults to True.
- Returns
the lower bound and the upper bound arrays of the predictive intervals for test data.
- Return type
PIs (two numpy arrays)
- load_model(path=PosixPath('model/checkpoint_crmmd.pt'))¶
Load Pytorch model.
- Parameters
model_path (string or path) – Path for loading model.
- save_model(model_path=PosixPath('model/checkpoint_crmmd.pt'))¶
Save pytorch model.
- Parameters
model_path (string or path) – Path for saving model.
realseries.models.hnn module¶
The models(HNN, Deep-ensemble, MC-dropout, CRMMD…) for time series forcasting and uncertainty prediction.
- class realseries.models.hnn.HNN(kernel_type='LSTM', input_size=128, hidden_sizes=[128, 64], prediction_window_size=1, activation='tanh', dropout_rate=0.2, variance=True, lr=0.0002, weight_decay=0.001, grad_clip=10, epochs=200, batch_size=1024, window_size=15, model_path='./model', seed=1111)¶
Bases:
realseries.models.base.BaseModel
HNN forecaster for uncertainty prediction.
- Parameters
kernel_type (str, optional) – Type of recurrent net (RNN, LSTM, GRU). Defaults to ‘LSTM’.
input_size (int, optional) – Size of rnn input features. Defaults to 128.
hidden_sizes (list, optional) – Number of hidden units per layer. Defaults to [128,64].
prediction_window_size (int, optional) – Prediction window size. Defaults to 1.
activation (str,optional) – The activation func to use. Can be either
'tanh'
or'relu'
. Default:'relu'
dropout_rate (float, optional) – Defaults to 0.2.
variance (bool, optional) – Whether to add a variance item at the last layer to indicate uncertainty. Default to True
lr (float, optional) – Learning rate. Defaults to 0.0002.
weight_decay (float, optional) – Weight decay. Defaults to 1e-4.
grad_clip (int, optional) – Gradient clipping. Defaults to 10.
epochs (int, optional) – Upper epoch limit. Defaults to 200.
batch_size (int, optional) – Batch size. Defaults to 1024.
window_size (int, optional) – LSTM input sequence length. Defaults to 15.
model_path (str, optional) – The path to save or load model. Defaults to ‘./model’.
seed (int, optional) – Seed. Defaults to 1111.
- model¶
HNN model.
- evaluation_model(scaler, test_data, test_label, t=1, confidence=95)¶
Get predictive intervals and evaluation scores.
- Parameters
scaler – receive the scaler of data loader
test_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
test_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
t (optional, int) – the forecasting horizon, default to 1
confidence (optional, int) – the confidence of predictive intervals. Default to 95, output 95% predictive intervals.
- Returns
the lower bound and the upper bound arrays of the predictive intervals for test data. rmse (float): the rmse score calibration error (float): the uncertainty evaluation score for test data.
- Return type
PIs (two numpy arrays)
- fit(train_data, train_label, val_data, val_label, patience=50, delta=0, verbose=True)¶
Train the LSTM model.
- Parameters
train_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
train_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
val_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
val_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
patience (int, optional) – Patience argument represents the number of epochs before stopping once your loss starts to increase (stops improving). Defaults to 10.
delta (int, optional) – A threshold to whether quantify a loss at some epoch as improvement or not. If the difference of loss is below delta, it is quantified as no improvement. Better to leave it as 0 since we’re interested in when loss becomes worse. Defaults to 0.
verbose (bool, optional) – Verbose decides what to print. Defaults to True.
- model¶
a trained model to save to model_path/checkpoint_hnn.pt.
- forecast(scaler, test_data, t=1, confidence=95, is_uncertainty=True)¶
Get predictive intervals and evaluation scores.
- Parameters
scaler – receive the scaler of data loader
test_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
t (optional, int) – the forecasting horizon, default to 1
confidence (optional, int) – the confidence of predictive intervals. Default to 95, output 95% predictive intervals.
is_uncertainty (optional, bool) – whether to get uncertainty, if true, outputing PIs, if false, outputing means. Defaults to True.
- Returns
the lower bound and the upper bound arrays of the predictive intervals for test data.
- Return type
PIs (two numpy arrays)
- load_model(path=PosixPath('model/checkpoint_hnn.pt'))¶
Load Pytorch model.
- Parameters
model_path (string or path) – Path for loading model.
- save_model(model_path=PosixPath('model/checkpoint_hnn.pt'))¶
Save pytorch model.
- Parameters
model_path (string or path) – Path for saving model.
realseries.models.mc_dropout module¶
The models(HNN, Deep-ensemble, MC-dropout, CRMMD…) for time series forcasting and uncertainty prediction.
- class realseries.models.mc_dropout.MC_dropout(kernel_type='LSTM', input_size=128, hidden_sizes=[128, 64], prediction_window_size=1, activation='tanh', dropout_rate=0.2, variance=True, lr=0.0002, weight_decay=0.001, grad_clip=10, epochs=200, batch_size=1024, window_size=15, model_path='./model', seed=1111)¶
Bases:
realseries.models.base.BaseModel
MC-dropout forecaster for uncertainty prediction.
- Parameters
kernel_type (str, optional) – Type of recurrent net (RNN, LSTM, GRU). Defaults to ‘LSTM’.
input_size (int, optional) – Size of rnn input features. Defaults to 128.
hidden_sizes (list, optional) – Number of hidden units per layer. Defaults to [128,64].
prediction_window_size (int, optional) – Prediction window size. Defaults to 1.
activation (str,optional) – The activation func to use. Can be either
'tanh'
or'relu'
. Default:'relu'
dropout_rate (float, optional) – Defaults to 0.2.
variance (bool, optional) – Whether to add a variance item at the last layer to indicate uncertainty. Default to True
lr (float, optional) – Learning rate. Defaults to 0.0002.
weight_decay (float, optional) – Weight decay. Defaults to 1e-4.
grad_clip (int, optional) – Gradient clipping. Defaults to 10.
epochs (int, optional) – Upper epoch limit. Defaults to 200.
batch_size (int, optional) – Batch size. Defaults to 1024.
window_size (int, optional) – LSTM input sequence length. Defaults to 15.
model_path (str, optional) – The path to save or load model. Defaults to ‘./model’.
seed (int, optional) – Seed. Defaults to 1111.
- model¶
regular MC-dropout model.
- evaluation_model(scaler, test_data, test_label, t=1, confidence=95, mc_times=400)¶
Get predictive intervals and evaluation scores.
- Parameters
scaler – receive the scaler of data loader
test_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
test_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
t (optional, int) – the forecasting horizon, default to 1
confidence (optional, int) – the confidence of predictive intervals. Default to 95, output 95% predictive intervals.
mc_times (optional, int) – the sampling times of MC dropout, Default to 400
- Returns
the lower bound and the upper bound arrays of the predictive intervals for test data. rmse (float): the rmse score calibration error (float): the uncertainty evaluation score for test data.
- Return type
PIs (two numpy arrays)
- fit(train_data, train_label, val_data, val_label, monitor='val_loss', patience=50, delta=0, verbose=True)¶
Train the LSTM model.
- Parameters
train_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
train_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
val_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
val_label (numpy array) – The 2-D input sequence (n_samples,prediction_window_size)
patience (int, optional) – Patience argument represents the number of epochs before stopping once your loss starts to increase (stops improving). Defaults to 10.
delta (int, optional) – A threshold to whether quantify a loss at some epoch as improvement or not. If the difference of loss is below delta, it is quantified as no improvement. Better to leave it as 0 since we’re interested in when loss becomes worse. Defaults to 0.
verbose (bool, optional) – Verbose decides what to print. Defaults to True.
- model¶
a trained model to save to model_path/checkpoint_mc.pt.
- forecast(scaler, test_data, t=1, confidence=95, mc_times=400, is_uncertainty=True)¶
Get predictive intervals and evaluation scores.
- Parameters
scaler – receive the scaler of data loader
test_data (numpy array) – The 3-D input sequence (n_samples,window_size,n_features)
t (optional, int) – the forecasting horizon, default to 1
confidence (optional, int) – the confidence of predictive intervals. Default to 95, output 95% predictive intervals.
mc_times (optional, int) – the sampling times of MC dropout, Default to 400
is_uncertainty (optional, bool) – whether to get uncertainty, if true, outputing PIs, if false, outputing means. Defaults to True.
- Returns
the lower bound and the upper bound arrays of the predictive intervals for test data.
- Return type
PIs (two numpy arrays)
- load_model(path=PosixPath('model/checkpoint_mc.pt'))¶
Load Pytorch model.
- Parameters
model_path (string or path) – Path for loading model.
- save_model(model_path=PosixPath('model/checkpoint_mc.pt'))¶
Save pytorch model.
- Parameters
model_path (string or path) – Path for saving model.
Utility Functions¶
realseries.utils.data module¶
The function for load and process data.
- realseries.utils.data.generate_arma_data(n=1000, ar=None, ma=None, contamination_rate=0.05, contamination_variance=20, random_seed=None)¶
Generate synthetic data. Utility function for generate synthetic data for time series data
raw data for forecasting.
with contamination for anomaly detection.
Generate using linear method.
- Parameters
n (int, optional) – The length of training time series to generate. Defaults to 1000.
ar (float array, optional) – Parameter of AR model. Defaults to None.
ma (float array, optional) – Parameter of MA model. Defaults to None.
contamination_rate (float, optional) – The amount of contamination of the dataset in (0., 0.1). Defaults to 0.05.
contamination_variance (float, optional) – Variance of contamination. Defaults to 20.
random_seed (int, optional) – Specify a random seed if need. Defaults to None.
- realseries.utils.data.load_NAB(dirname='realKnownCause', filename='nyc_taxi.csv', fraction=0.5)¶
Load data from NAB dataset.
- Parameters
dirname (str, optional) – Dirname in
examples/data/NAB_data
. Defaults to ‘realKnownCause’.filename (str, optional) – The name of csv file. Defaults to ‘nyc_taxi.csv’.
fraction (float, optional) – The amount of data used for test set. Defaults to 0.5.
- Returns
The pd.DataFrame instance of train and test set.
- Return type
(DataFrame, DataFrame)
- realseries.utils.data.load_SMD(data_name='machine-1-1')¶
Load SMD dataset.
- Parameters
data_name (str, optional) – The filename of txt. Defaults to ‘machine-1-1’.
- Returns
Train_data, test_data and test_label
- Return type
pd.DataFrame
- realseries.utils.data.load_Yahoo(dirname='A1Benchmark', filename='real_1.csv', fraction=0.5, use_norm=False, detail=True)¶
Load Yahoo dataset.
- Parameters
dirname (str, optional) – Directory name. Defaults to ‘A1Benchmark’.
filename (str, optional) – File name. Defaults to ‘real_1.csv’.
fraction (float, optional) – Data split rate. Defaults to 0.5.
use_norm (bool, optional) – Whether to use data normalize.
- Returns
train and test DataFrame.
- Return type
pd.DataFrame
- realseries.utils.data.load_exp_data(dataname='pm25', window_szie=15, prediction_window_size=1, fractions=[0.6, 0.2, 0.2], isshuffle=True, isscaler=True)¶
reading data and pro-processing, get training data, validation data and test data for model.
- Parameters
dataname (str, optional) – the name of dataset, eg: ‘pm25’, ‘bike_sharing’, ‘air_quality’, ‘metro_traffic’.
window_size (int, optional) – Number of lag observations as input. Defaults to 15.
prediction_window_size (int, optional) – Prediction window size. Defaults to 10.
fractions – (list, optional): the training data, test data and validation data ratio, Defaults to [0.6,0.2,0.2].
is_shuffle (bool, optional) – whether to shuffle the raw data. Defaults to True.
is_scaler – (bool, optional): whether to scale the raw data. Defaults to True.
- Returns
train_data, train_label, test_data, test_label, validation_data, validation_label
- Return type
a splitted dataset(NumPy array)
- realseries.utils.data.load_split_NASA(chan_id='T-9')¶
Load NASA data for lstm dynamic method.
- Parameters
chan_id (str, optional) – The name of file. Defaults to ‘T-9’.
- Returns
A tuple contains train_set and test_set.
- Return type
pd.DataFrame
- realseries.utils.data.load_splitted_RNN(dirname='power_demand', filename='power_data.csv')¶
Load data from RNN dataset.
- Parameters
dirname (str, optional) – Dirname in
examples/data/RNN_data
. Defaults to ‘power_demand’.filename (str, optional) – The name of csv file. Defaults to ‘power_data.csv’.
- Returns
The pd.DataFrame instance of train and test set.
- Return type
(DataFrame, DataFrame)
realseries.utils.dataset module¶
Load Data.
- class realseries.utils.dataset.Data¶
Bases:
object
- data2supervised(infer_length, pred_length, column)¶
[summary]
- Parameters
infer_length ([type]) – [description]
pred_length ([type]) – [description]
column ([type]) – [description]
- data_iterator(batchsize)¶
[summary]
- Parameters
batchsize ([type]) – [description]
- Returns
[description]
- Return type
[type]
- data_to_seqvl_format(window_size, window_count, split_rate)¶
[summary]
- Parameters
window_size ([type]) – [description]
window_count ([type]) – [description]
split_rate ([type]) – [description]
- Returns
[description]
- Return type
[type]
- load_data(path)¶
[summary]
- Parameters
path ([type]) – [description]
- Returns
[description]
- Return type
[type]
- load_yahoo(path)¶
[summary]
- Parameters
path ([type]) – [description]
- normalize(normalize_type=None)¶
[summary]
- Parameters
normalize_type ([type], optional) – [description]. Defaults to None.
- Raises
NameError – [description]
realseries.utils.errors module¶
“The function in lstm dynamic method.
- realseries.utils.errors.get_errors(batch_size, window_size, smoothing_perc, y_test, y_hat, smoothed=True)¶
Calculate the difference between predicted telemetry values and actual values, then smooth residuals using ewma to encourage identification of sustained errors/anomalies.
- Parameters
batch_size (int) – Number of values to evaluate in each batch in the prediction stage.
window_size (int) – Window_size to use in error calculation.
smoothing_perc (float) – Percentage of total values used in EWMA smoothing.
y_test (ndarray) – Array of test targets corresponding to true values to be predicted at end of each sequence
y_hat (ndarray) – predicted test values for each timestep in y_test
smoothed (bool, optional) – If False, return unsmooothed errors (used for assessing quality of predictions)
- Returns
unsmoothed errors (residuals) e_s (list): smoothed errors (residuals)
- Return type
e (list)
- realseries.utils.errors.process_errors(p, l_s, batch_size, window_size, error_buffer, y_test, y_hat, e_s)¶
Using windows of historical errors (h = batch size * window size), calculate the anomaly threshold (epsilon) and group any anomalous error values into continuos sequences. Calculate score for each sequence using the max distance from epsilon.
- Parameters
p (float, optional) – Minimum percent decrease between max errors in anomalous sequences (used for pruning).
l_s (int, optional) – Length of the input sequence for LSTM.
batch_size (int) – Number of values to evaluate in each batch in the prediction stage.
window_size (int) – Window_size to use in error calculation.
error_buffer (int, optional) – Number of values surrounding an error that are brought into the sequence.
y_test (np array) – test targets corresponding to true telemetry values at each timestep t.
y_hat (np array) – test target predictions at each timestep t.
e_s (list) – smoothed errors (residuals) between
y_test
andy_hat
.
- Returns
Start and end indices for each anomaloues sequence. anom_scores (list): Score for each anomalous sequence.
- Return type
E_seq (list of tuples)
realseries.utils.evaluation module¶
Evaluation function.
- realseries.utils.evaluation.adjust_metrics(pred, label, delay=7, beta=1.0)¶
Calculating the precison and recall etc. using adjusted label.
- Parameters
pred (ndarray) – The predicted y.
label (ndarray) – The true y label.
delay (int, optional) – The max allowed delay of the anomaly occuring. Defaults to 7.
beta (float, optional) – The balance between presicion and recall for`` f score``. Defaults to 1.0.
- Returns
Tuple contains
precision, recall, f1, tp, tn, fp, fn
.- Return type
tuple
- realseries.utils.evaluation.adjust_predicts(predict, label, delay=7)¶
Adjust the predicted results.
- Parameters
predict (ndarray) – The predicted y.
label (ndarray) – The true y label.
delay (int, optional) – The max allowed delay of the anomaly occuring. Defaults to 7.
- Returns
The adjusted predicted array y.
- Return type
naarray
- realseries.utils.evaluation.baseline_oneday(y_true)¶
Use the previous value as the predicted value
- Parameters
y_true (1-D arral_like) – Auto-regressive inputs.
- Returns
Evaluation result of one-day ahead baselinesss
- Return type
dict
- realseries.utils.evaluation.baseline_threeday(y_true)¶
Use the average of 3 previous value as the predicted value.
- Parameters
y_true (aray_like) – Auto-regressive inputs.
- Returns
Evaluation result of three-day-ahead-average baseline.
- Return type
dcit
- realseries.utils.evaluation.evaluate(y_true, y_pred)¶
Eval metrics. Here 1 stand for anomaly label and 0 is normal samples.
- Parameters
y_true (1-D array_like) – The actual value.
y_pred (1-D array_like) – The predictive value.
- Returns
a dictionary which includes mse, rmse, mae and r2.
- Return type
dict
- realseries.utils.evaluation.point_metrics(y_pred, y_true, beta=1.0)¶
Calculate precison recall f1 bny point to point comparison.
- Parameters
y_pred (ndarray) – The predicted y.
y_true (ndarray) – The true y.
beta (float) – The balance for calculating f score.
- Returns
Tuple contains
precision, recall, f1, tp, tn, fp, fn
.- Return type
tuple
- realseries.utils.evaluation.thres_search(score, label, num_samples=1000, beta=1.0, sampling='log', adjust=True, delay=7)¶
Find the best-f1 score by searching best threshold
- Parameters
score (ndarray) – The anomaly score.
label (ndarray) – The true label.
num_samples (int) – The number of sample points between
[min_score, max_score]
.beta (float, optional) – The balance between precison and recall in
f score
. Defaults to 1.0.sampling (str, optional) – The sampling method including ‘log’ and ‘linear’. Defaults to ‘log’.
- Returns
Results in best threshold
precison, recall, f1, best_thres, predicted labele
.- Return type
tuple
realseries.utils.preprocess module¶
Preprocess function
- realseries.utils.preprocess.augmentation(data, label, noise_ratio=0.05, noise_interval=0.0005, max_length=100000)¶
Data augmentation by add anomaly points to origin data.
- Parameters
data (array_like) – The origin data.
label (array_like) – The origin label.
noise_ratio (float, optional) – The ratio of adding noise to data. Defaults to 0.05.
noise_interval (float, optional) – Noise_interval. Defaults to 0.0005.
max_length (int, optional) – The max length of data after augmentation. Defaults to 100000.
- realseries.utils.preprocess.bandpass_cnt(data, low_cut_hz, high_cut_hz, fs, filt_order=3, axis=0, filtfilt=False)¶
Bandpass signal applying causal butterworth filter of given order.
- Parameters
data (2d-array) – Time x channels.
low_cut_hz (float) – Low cut hz.
high_cut_hz (float) – High cut hz.
fs (float) – Sample frequency.
filt_order (int, optional) – Defaults to 3.
axis (int, optional) – Time axis. Defaults to 0.
filtfilt (bool, optional) – Whether to use filtfilt instead of lfilter. Defaults to False.
- Returns
Data after applying bandpass filter.
- Return type
2d-array
- realseries.utils.preprocess.exponential_running_demean(data, factor_new=0.001, init_block_size=None)¶
Perform exponential running demeanining. Compute the exponental running mean \(m_t\) at time t as \(m_t=\mathrm{factornew} \cdot mean(x_t) + (1 - \mathrm{factornew}) \cdot m_{t-1}\). Deman the data point \(x_t\) at time t as: \(x'_t=(x_t - m_t)\).
- Parameters
data (2darray) – Shape is (time, channels)
factor_new (float, optional) – Defaults to 0.001.
init_block_size (int, optional) – Demean data before to this index with regular demeaning. Defaults to None.
- Returns
Demeaned data (time, channels).
- Return type
2darray
- realseries.utils.preprocess.exponential_running_standardize(data, factor_new=0.001, init_block_size=None, eps=0.0001)¶
Perform exponential running standardization.
Compute the exponental running mean \(m_t\) at time t as \(m_t=\mathrm{factornew} \cdot mean(x_t) + (1 - \mathrm{factornew}) \cdot m_{t-1}\).
Then, compute exponential running variance \(v_t\) at time t as \(v_t=\mathrm{factornew} \cdot (m_t - x_t)^2 + (1 - \mathrm{factornew}) \cdot v_{t-1}\).
Finally, standardize the data point \(x_t\) at time t as: \(x'_t=(x_t - m_t) / max(\sqrt{v_t}, eps)\).
- Parameters
data (2darray) – The shape is (time, channels)
factor_new (float, optional) – Defaults to 0.001.
init_block_size (int, optional) – Standardize data before to this index with regular standardization. Defaults to None.
eps (float, optional) – Stabilizer for division by zero variance.. Defaults to 1e-4.
- Returns
Standardized data (time, channels).
- Return type
2darray
- realseries.utils.preprocess.filter_is_stable(a)¶
Check if filter coefficients of IIR filter are stable.
- Parameters
a (list) – list or 1darray of number. Denominator filter coefficients a.
- Returns
Filter is stable or not.
- Return type
bool
Notes
Filter is stable if absolute value of all roots is smaller than 1, see http://stackoverflow.com/a/8812737/1469195.
- realseries.utils.preprocess.highpass_cnt(data, low_cut_hz, fs, filt_order=3, axis=0)¶
signal applying causal butterworth filter of given order.
- Parameters
data (2d-array) – Time x channels.
low_cut_hz (float) – Low cut frequency HZ.
fs (float) – Sample frequency.
filt_order (int) – Defaults to 3.
axis (int, optional) – Time axis. Defaults to 0.
- Returns
Data after applying highpass filter.
- Return type
highpassed_data (2d-array)
- realseries.utils.preprocess.lowpass_cnt(data, high_cut_hz, fs, filt_order=3, axis=0)¶
Lowpass signal applying causal butterworth filter of given order.
- Parameters
data (2d-array) – Time x channels.
high_cut_hz ([type]) – High cut frequency.
fs ([type]) – Sample frequency.
filt_order (int, optional) – Defaults to 3.
- Returns
Data after applying lowpass filter.
- Return type
2d-array
- realseries.utils.preprocess.normalization(X)¶
Normalization to [0, 1] on each column data of input array.
- Parameters
X (array_like) – The input array for formalization.
- Returns
Normalized array in [0, 1].
- Return type
ndarray
- realseries.utils.preprocess.standardization(X)¶
Standardization each column data by reduce mean and divide std.
- Parameters
X (array_like) – The input array for standardization.
- Returns
Standardized array with 0 mean and 1 std.
- Return type
ndarray
realseries.utils.segment module¶
Segment function.
- class realseries.utils.segment.BatchSegment(series_length, window_size, batch_size, shuffle=False, discard_last_batch=False)¶
Bases:
object
[summary]
- Parameters
series_length (int) – Series length.
window_size (int) – Window size.
batch_size (int) – Batch size.
shuffle (bool, optional) – Defaults to False.
discard_last_batch (bool, optional) – If the last batch not complete, ignore it. Defaults to False.
- Raises
ValueError – Window_size must larger than 1.
ValueError – Window_size must smaller than series_length
- get_iterator(arrays)¶
Get data iterator for input sequences.
- Parameters
arrays (list) – Contain the data to be iterated, which with the same length.
- Yields
tuple – Contain the sliding window data, which has the same order as param: arrays.
- realseries.utils.segment.slice_generator(series_length, batch_size, discard_last_batch=False)¶
Generate slices for series-like data
- Parameters
series_length (int) – Series length.
batch_size (int) – Batch size.
discard_last_batch (bool, optional) – If the last batch not complete, ignore it. Defaults to False.
- Yields
slice
realseries.utils.utility module¶
function like save load model, early stop in model training.
- class realseries.utils.utility.EarlyStopping(monitor='val_loss', patience=7, delta=0, verbose=False)¶
Bases:
object
- Early stops the training if validation loss doesn’t improve
after a given patience.
- Parameters
patience (int) – How long to wait after last time validation loss improved. Default to 7
verbose (bool) – If True, prints a message for each validation loss improvement. Default to False
delta (float) – Minimum change in the monitored quantity to qualify as an improvement. Default to 0.
- save_checkpoint(value, model)¶
Saves checkpoint when validation loss decrease.
- Parameters
value (float) – The value of new validation loss.
model (model) – The current better model.
- class realseries.utils.utility.aleatoric_loss¶
Bases:
torch.nn.modules.module.Module
The negative log likelihood (NLL) loss.
- Parameters
gt – the ground truth
pred_mean – the predictive mean
logvar – the log variance
- loss¶
the nll loss result for the regression.
- forward(gt, pred_mean, logvar)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- training: bool¶
- realseries.utils.utility.load_model(model, path)¶
Load Pytorch model.
- Parameters
model (pytorch model) – The initialized pytorch model.
model_path (string or path) – Path for loading model.
- Returns
The loaded model.
- Return type
model
- class realseries.utils.utility.mmd_loss¶
Bases:
torch.nn.modules.module.Module
The mmd loss.
- Parameters
source_features – the ground truth
target_features – the prediction value
- loss_value¶
the nll loss result for the regression.
- forward(source_features, target_features)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- gaussian_kernel_matrix(x, y, sigmas)¶
- maximum_mean_discrepancy(x, y, kernel=<function mmd_loss.gaussian_kernel_matrix>)¶
- pairwise_distance(x, y)¶
- training: bool¶
- realseries.utils.utility.save_model(model, model_path)¶
Save pytorch model.
- Parameters
model (pytorch model) – The trained pytorch model.
model_path (string or path) – Path for saving model.
realseries.utils.visualize module¶
Plot the data.
- realseries.utils.visualize.mat_plot(X, y, fig_size=(15, 10), title=None, if_save=False, name=None)¶
Plot array X and y.
- Parameters
X (1darray) – Array 1.
y (1darray) – Array 2.
fig_size (tuple, optional) – Size of the figure. Defaults to (15, 10).
title (str, optional) – Figure title.. Defaults to None.
if_save (bool, optional) – Whether or not save.. Defaults to False.
name (Str, optional) – Save figure name.. Defaults to None.
- realseries.utils.visualize.pd_plot(tab, fig_size=(15, 10), cols=None, title=None, if_save=False, name=None)¶
Plot time series for pandas data.
- Parameters
tab – Pandas file.
fig_size – Figure size.
cols – Specify which cols to plot.
title – Figure title.
if_save – Whether or not save.
name – Save figure name.
- realseries.utils.visualize.plot_anom(pd_data_label, pred_anom, pred_score, fig_size=(9, 5), if_save=False, name=None)¶
Visualize origin time series and predicted result.
- Parameters
pd_data_label (dataframe) – Pandas dataframe and the last column is label.
pred_anom (1darray) – The predicted label.
pred_score (1darray) – The predicted anomaly score.
fig_size (tuple, optional) – Figure size. Defaults to (9, 5).
if_save (bool, optional) – Whether to save or not. Defaults to False.
name (str, optional) – Save file name. Defaults to None.
- realseries.utils.visualize.plot_mne(X, columns=None, sfreq=1, duration=1000, start=0, n_channels=20, scalings='auto', ch_types=None, color=None, highpass=None, lowpass=None, filtorder=4)¶
plot mne raw data
- Parameters
X (numpy array) – data with shape (n_samples, n_features)
columns (list, optional) – the string name or ID of each column features
sfreq (int, optional) – sample frequency. Defaults to 1.
duration (int, optional) – Time window (s) to plot in the frame for showing. The lesser of this value and the duration of the raw file will be used. Defaults to 1000.
start (int, optional) – The start time to show. Defaults to 0.
n_channels (int, optional) – num of channels to show in one frame. Defaults to 20.
scalings (dict, optional) –
Scaling factors for the traces. If any fields in scalings are ‘auto’, the scaling factor is set to match the 99.5th percentile of a subset of the corresponding data. If scalings == ‘auto’, all scalings fields are set to ‘auto’. If any fields are ‘auto’ and data is not preloaded, a subset of times up to 100mb will be loaded. If None, defaults to:
dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4, whitened=1e2).
The larger the scale is, the amplitudes of this channel will zoom smaller.
color (dict | color object, optional) –
Color for the data traces. If None, defaults to:
dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m', emg='k', ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k'). Defaults to None.
ch_types (list, optional) – Definition of channel types like [‘eeg’, ‘eeg’, ‘eeg’, ‘ecg’]. It can be used to change the color of each channel by setting color. Defaults to None.
highpass (float, optional) – Highpass to apply when displaying data. Defaults to None.
lowpass (float, optional) – Lowpass to apply when displaying data. If highpass > lowpass, a bandstop rather than bandpass filter will be applied. Defaults to None.
filtorder (int, optional) – 0 will use FIR filtering with MNE defaults. Other values will construct an IIR filter of the given order. This parameter will work when lowpass or highpass is not None. Defaults to 4.
- Returns
Instance of matplotlib.figure.Figure
- Return type
fig
Time Series Datasets¶
RealSeries provides several example datasets that can be used for Forecast with Uncertainty, and Anomaly Detection, Granger causality.
Forecast Datasets¶
Dir |
Name |
External |
channel |
HNN |
MC_dropout |
CRMMD |
|||
RMSE |
EPIW |
RMSE |
EPIW |
RMSE |
EPIW |
||||
Forecast_data |
air_quality |
muti |
79.60 |
0.058 |
81.16 |
0.339 |
80.69 |
0.010 |
|
bike_sharing |
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset |
muti |
40.71 |
0.054 |
38.86 |
0.258 |
37.93 |
0.006 |
|
metro_traffic |
https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volum |
muti |
556.3 |
0.102 |
523.6 |
0.304 |
545.5 |
0.017 |
|
pm25 |
muti |
58.81 |
0.022 |
70.95 |
0.331 |
57.43 |
0.010 |
Anomaly Detection Datasets¶
Dir |
Name |
External |
paper |
channel |
Lumino |
SR_CNN |
IForest |
LSTM_dym |
Rrcf |
VAE |
||||||||||||
pre |
rec |
f1 |
pre |
rec |
f1 |
pre |
rec |
f1 |
pre |
rec |
f1 |
pre |
rec |
f1 |
pre |
rec |
f1 |
|||||
realKnownCause |
nyc_taxi |
https://github.com/numenta/NAB/tree/master/data/realKnownCause |
single |
0.99 |
0.19 |
0.33 |
0.99 |
0.59 |
0.75 |
0.99 |
0.39 |
0.57 |
0.99 |
0.39 |
0.57 |
0.99 |
0.19 |
0.33 |
0.99 |
0.79 |
0.88 |
|
realTweets |
UPS |
single |
0 |
0 |
0 |
0.98 |
0.99 |
0.99 |
0 |
0 |
0 |
0.73 |
0.99 |
0.95 |
0 |
0 |
0 |
0.85 |
0.99 |
0.92 |
||
FE |
single |
0 |
0 |
0 |
0.37 |
0 |
0.01 |
0.98 |
0.99 |
0.99 |
0.87 |
0.99 |
0.93 |
0.99 |
0.99 |
0.99 |
0.96 |
0.99 |
0.98 |
|||
KO |
single |
0 |
0 |
0 |
0.99 |
0.49 |
0.66 |
0.99 |
0.49 |
0.66 |
0 |
0 |
0 |
0.99 |
0.01 |
0.01 |
0 |
0 |
0 |
|||
IBM |
single |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
0 |
0 |
0 |
0.99 |
0.61 |
0.76 |
0 |
0 |
0 |
0 |
0 |
0 |
|||
GOOG |
single |
0 |
0 |
0 |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
0 |
0 |
0 |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
|||
FB |
single |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
0 |
0 |
0 |
0.85 |
0.99 |
0.92 |
0 |
0 |
0 |
0 |
0 |
0 |
|||
CVS |
single |
0.996 |
0.08 |
0.14 |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
0 |
0 |
0 |
0 |
0 |
0 |
0.99 |
0.75 |
0.86 |
|||
CRM |
single |
0 |
0 |
0 |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
0.91 |
0.99 |
0.95 |
0 |
0 |
0 |
0.89 |
0.99 |
0.94 |
|||
AMZN |
single |
0.99 |
0.49 |
0.66 |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
0 |
0 |
0 |
0 |
0 |
0 |
0.98 |
0.99 |
0.99 |
|||
AAPL |
single |
0 |
0 |
0 |
0.98 |
0.99 |
0.99 |
0.98 |
0.99 |
0.99 |
0 |
0 |
0 |
0.99 |
0.99 |
0.99 |
0.97 |
0.99 |
0.98 |
|||
Yahoo |
A1 |
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly |
single |
0.86 |
0.57 |
0.69 |
0.83 |
0.17 |
0.29 |
0.54 |
0.01 |
0.02 |
0.003 |
0.008 |
0.005 |
0.77 |
0.64 |
0.70 |
||||
NASA |
multi |
0.96 |
0.15 |
0.26 |
0.83 |
0.50 |
0.62 |
Granger causality Datasets¶
datasets |
External |
GC |
DWGC |
|||
accuracy |
recall |
accuracy |
recall |
|||
NAR simulation |
window length=10 |
0.42 |
0.58 |
0.44 |
0.73 |
|
window length=20 |
0.76 |
0.65 |
0.80 |
0.65 |
||
window length=30 |
0.93 |
0.66 |
0.94 |
0.67 |
||
window length=100 |
1 |
0.86 |
1 |
0.88 |
||
ENSO data(DWGC) |
Notebook: http://git.real-ai.cn/realseries/realseries/blob/causality_branch/notebooks/DWGC.ipynb |
|||||
ENSO data(GC) |
Notebook: http://git.real-ai.cn/realseries/realseries/blob/causality_branch/notebooks/GC.ipynb |
Anomaly Detection¶
Problem Description¶
Time Series Anomaly Detection’s task is to find out the possible anomalies lies in time series, like this:

To formalize, give a time series with either single channel or multi channels:

We aim to find the possible anomalies lies in X:

Models¶
Abbr |
Algorithm |
type |
supervise |
Year |
Class |
Ref |
IForest |
Isolation forest. |
outlier ensembles |
unsupervised |
2008 |
||
LSTM_dynamic |
LSTM based nonparametricanomaly thresholding. |
neural networks |
unsupervised |
2018 |
||
Lumino |
A light weight library luminol. |
distance based |
unsupervised |
2017 |
||
RCForest |
Robust random cut forest. |
outlier ensembles |
unsupervised |
2016 |
||
LSTMED |
RNN based time-series prediction. |
neural networks |
unsupervised |
2016 |
||
SR_CNN |
Spectral Residual and ConvNet based anomaly detection. |
neural networks |
supervised |
2019 |
||
STL |
Seasonal and Trend decomposition using Loess. |
weighted regression |
unsupervised |
1990 |
||
VAE |
Variational Auto-Encoder anomaly detection. |
probabilistic |
unsupervised |
2018 |
References
- IForest
Liu F T, Ting K M, Zhou Z H. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008: 413-422.
- LSTM_dynamic
Hundman K, Constantinou V, Laporte C, et al. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 387-395.
- Lumino
Luminol. Github, https://github.com/linkedin/luminol
- RCForest
Guha, N. Mishra, G. Roy, & O. Schrijvers, Robust random cut forest based anomaly detection on streams, in Proceedings of the 33rd International conference on machine learning, New York, NY, 2016 (pp. 2712-2721).
- LSTMED
Malhotra P, Ramakrishnan A, Anand G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection[J]. arXiv preprint arXiv:1607.00148, 2016.
- SR_CNN
Ren H, Xu B, Wang Y, et al. Time-Series Anomaly Detection Service at Microsoft[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 3009-3017.
- STL
Cleveland R B. STL: A seasonal-trend decomposition procedure based on loess. 1990[J]. DOI: citeulike-article-id, 1435502.
- VAE
Xu H, Chen W, Zhao N, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications[C]//Proceedings of the 2018 World Wide Web Conference. 2018: 187-196.
- Robust
Su Y, Zhao Y, Niu C, et al. Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 2828-2837.
- NAB
Ahmad S, Lavin A, Purdy S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147.
- NAB2
Lavin A, Ahmad S. Evaluating Real-Time Anomaly Detection Algorithms–The Numenta Anomaly Benchmark[C]//2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2015: 38-44.
Granger causality¶
Problem Description of Granger causality¶
Granger causality Detection’s task is to find out the Granger causality lies in multi-channel time series on window level or channel level, like this:


To formalize, give a time series with multi channels:

We aim to find the Granger causality lies in channel level:

We also try to pinpoint causality from the channel level to the point-to-point level:

where 2 time points are in the same window index.
Models of Granger causality¶
Abbr |
Algorithm |
level |
supervise |
Year |
Class |
Ref |
GC |
Granger causality |
channel level |
unsupervised |
1969 |
||
DWGC |
Dynamic window-level Granger causality |
window level |
unsupervised |
2020(original) |
References
- GC
Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, pages 424–438, 1969.
- DWGC
Dynamic Window-level Granger Causality of Multi-channel Time Series. Zhiheng Zhang, Wenbo Hu, Tian Tian, Jun Zhu. arXiv:2006.07788. 2020.
Forecast with Uncertainty¶
Problem Description¶
Time Series Forecast’s task is to model multiple regression sub-problems in sequence, and the tendency along the sliding windows can beused to examine the obtained predictive uncertainty. Forecasting involves taking models fit on historical data and using them to predict future observations.

To formalize, give a time series with either single channel or multi channels:
where \(n\) is the variable dimension or channels, we aim at predicting a series of future signals in a rolling forecasting fashion. That being said, to predict \(y_{T+h}\), where \(h\) is the desirable horizon ahead of the current time stamp, we assume \(\left\{\boldsymbol{y_{1}}, \boldsymbol{y_{2}}, \ldots, \boldsymbol{y_{T}}\right\}\) are available. Likewise, to predict the value of the next time stamp \(y_{T+h+1}\), we assume \(\left\{\boldsymbol{y_{1}}, \boldsymbol{y_{2}}, \ldots, \boldsymbol{y_{T}}, \boldsymbol{y_{T+1}}\right\}\) are available. We hence formulate the input matrix at time stamp \(T\) as \(X_{T}=\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{T}\right\} \in \mathbb{R}^{n \times T}\).
Moreover, we also want to know the uncertainty of predictive distribution, a calibrated forecaster outputs the cumulative distribution function (CDF) \(F_i\) by the predictive distribution for each input \(x_i\). Generally, we use predictive intervals (PIs) to represent the uncertainty. For example, given the probability 95%, the forecaster should output the 95% prediction interval.

Models¶
Abbr |
Algorithm |
type |
supervise |
Year |
Class |
Ref |
CRMMD |
Using maximum mean discrepancy (MMD) to perform distribution matching. |
kernel distance, two-step |
supervised |
2020 |
||
HNN |
Heteroscedastic neural networks output the mean and variance to obtain the uncertainty. |
neural networks |
supervised |
2017 |
||
MC-dropout |
Approximate Bayesian inference in deep Gaussian process. |
Bayesian approximation |
supervised |
2016 |
References
- CRMMD
Peng Cui, Wenbo Hu and Jun Zhu. Calibrated Reliable Regression using Maximum Mean Discrepancy. arXiv: 2006.10255.
- HNN
Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning forcomputer vision?Advances in neural information processing systems, pages 5574–5584, 2017.
- MC-dropout
Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representingmodel uncertainty in deep learning. Ininternational conference on machine learning, pages1050–1059, 2016.
Contribution¶
This project is headed by Wenbo Hu.
Other core members include:
Xianrui Zhang (Ph.D Student @ BUAA)
Wenkai Li (Bacholar Student @ CS of Tsinghua)
Zhiheng Zhang (Bacholar Student @ BUPT)
Peng Cui (Master @ CS of Tsinghua)
How to Contribute¶
Any contribution are welcomed. Here is a guide of how to conribute a spicific model to realseries.
Since RealSeries uses a split-joint structure to formulize the lib. To contribute a model is to follow the following steps:
create yourmodel.py in realseries/models;
inherite base.py to yourmodel.py;
develop your model;
write a jupyter notebook example and a documentation.