Anomaly Detection

Problem Description

Time Series Anomaly Detection’s task is to find out the possible anomalies lies in time series, like this:

../_images/srcnn_nyc_taxi.png

To formalize, give a time series with either single channel or multi channels:

../_images/anomaly-detection-1.png

We aim to find the possible anomalies lies in X:

../_images/anomaly-detection-2.png

Models

Abbr

Algorithm

type

supervise

Year

Class

Ref

IForest

Isolation forest.

outlier ensembles

unsupervised

2008

realseries.models.iforest.IForest

[IForest]

LSTM_dynamic

LSTM based nonparametricanomaly thresholding.

neural networks

unsupervised

2018

realseries.models.lstm_dynamic.LSTM_dynamic

[LSTM_dynamic]

Lumino

A light weight library luminol.

distance based

unsupervised

2017

realseries.models.lumino.Lumino

[Lumino]

RCForest

Robust random cut forest.

outlier ensembles

unsupervised

2016

realseries.models.rcforest.RCForest

[RCForest]

LSTMED

RNN based time-series prediction.

neural networks

unsupervised

2016

realseries.models.rnn.LSTMED

[LSTMED]

SR_CNN

Spectral Residual and ConvNet based anomaly detection.

neural networks

supervised

2019

realseries.models.srcnn.SR_CNN

[SR_CNN]

STL

Seasonal and Trend decomposition using Loess.

weighted regression

unsupervised

1990

realseries.models.stl.STL

[STL]

VAE

Variational Auto-Encoder anomaly detection.

probabilistic

unsupervised

2018

realseries.models.vae_ad.VAE_AD

[VAE]

References

IForest

Liu F T, Ting K M, Zhou Z H. Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008: 413-422.

LSTM_dynamic

Hundman K, Constantinou V, Laporte C, et al. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 387-395.

Lumino

Luminol. Github, https://github.com/linkedin/luminol

RCForest
  1. Guha, N. Mishra, G. Roy, & O. Schrijvers, Robust random cut forest based anomaly detection on streams, in Proceedings of the 33rd International conference on machine learning, New York, NY, 2016 (pp. 2712-2721).

LSTMED

Malhotra P, Ramakrishnan A, Anand G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection[J]. arXiv preprint arXiv:1607.00148, 2016.

SR_CNN

Ren H, Xu B, Wang Y, et al. Time-Series Anomaly Detection Service at Microsoft[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 3009-3017.

STL

Cleveland R B. STL: A seasonal-trend decomposition procedure based on loess. 1990[J]. DOI: citeulike-article-id, 1435502.

VAE

Xu H, Chen W, Zhao N, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications[C]//Proceedings of the 2018 World Wide Web Conference. 2018: 187-196.

Robust

Su Y, Zhao Y, Niu C, et al. Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 2828-2837.

NAB

Ahmad S, Lavin A, Purdy S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147.

NAB2

Lavin A, Ahmad S. Evaluating Real-Time Anomaly Detection Algorithms–The Numenta Anomaly Benchmark[C]//2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2015: 38-44.