Time Series Datasets

RealSeries provides several example datasets that can be used for Forecast with Uncertainty, and Anomaly Detection, Granger causality.

Forecast Datasets

Dir

Name

External

channel

HNN

MC_dropout

CRMMD

RMSE

EPIW

RMSE

EPIW

RMSE

EPIW

Forecast_data

air_quality

https://archive.ics.uci.edu/ml/datasets/Air+Quality

muti

79.60

0.058

81.16

0.339

80.69

0.010

bike_sharing

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

muti

40.71

0.054

38.86

0.258

37.93

0.006

metro_traffic

https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volum

muti

556.3

0.102

523.6

0.304

545.5

0.017

pm25

https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

muti

58.81

0.022

70.95

0.331

57.43

0.010

Anomaly Detection Datasets

Dir

Name

External

paper

channel

Lumino

SR_CNN

IForest

LSTM_dym

Rrcf

VAE

pre

rec

f1

pre

rec

f1

pre

rec

f1

pre

rec

f1

pre

rec

f1

pre

rec

f1

realKnownCause

nyc_taxi

https://github.com/numenta/NAB/tree/master/data/realKnownCause

[RCForest] [NAB]

single

0.99

0.19

0.33

0.99

0.59

0.75

0.99

0.39

0.57

0.99

0.39

0.57

0.99

0.19

0.33

0.99

0.79

0.88

realTweets

UPS

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0.98

0.99

0.99

0

0

0

0.73

0.99

0.95

0

0

0

0.85

0.99

0.92

FE

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0.37

0

0.01

0.98

0.99

0.99

0.87

0.99

0.93

0.99

0.99

0.99

0.96

0.99

0.98

KO

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0.99

0.49

0.66

0.99

0.49

0.66

0

0

0

0.99

0.01

0.01

0

0

0

IBM

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0.99

0.99

0.99

0

0

0

0.99

0.61

0.76

0

0

0

0

0

0

GOOG

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0

0

0

0.99

0.99

0.99

0

0

0

0

0

0

0.99

0.99

0.99

FB

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0.99

0.99

0.99

0

0

0

0.85

0.99

0.92

0

0

0

0

0

0

CVS

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0.996

0.08

0.14

0

0

0

0.99

0.99

0.99

0

0

0

0

0

0

0.99

0.75

0.86

CRM

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0

0

0

0.99

0.99

0.99

0.91

0.99

0.95

0

0

0

0.89

0.99

0.94

AMZN

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0.99

0.49

0.66

0

0

0

0.99

0.99

0.99

0

0

0

0

0

0

0.98

0.99

0.99

AAPL

https://github.com/numenta/NAB/tree/master/data/realTweets

[NAB] [NAB2]

single

0

0

0

0.98

0.99

0.99

0.98

0.99

0.99

0

0

0

0.99

0.99

0.99

0.97

0.99

0.98

Yahoo

A1

https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly

[VAE] [SR_CNN]

single

0.86

0.57

0.69

0.83

0.17

0.29

0.54

0.01

0.02

0.003

0.008

0.005

0.77

0.64

0.70

NASA

https://s3-us-west-2.amazonaws.com/telemanom/data.zip label

[LSTM_dynamic] [Robust]

multi

0.96

0.15

0.26

0.83

0.50

0.62

Granger causality Datasets

datasets

External

GC

DWGC

accuracy

recall

accuracy

recall

NAR simulation

window length=10

https://github.com/ZHzhang01/DWGC/tree/master/data

0.42

0.58

0.44

0.73

window length=20

0.76

0.65

0.80

0.65

window length=30

0.93

0.66

0.94

0.67

window length=100

1

0.86

1

0.88

ENSO data(DWGC)

Notebook: http://git.real-ai.cn/realseries/realseries/blob/causality_branch/notebooks/DWGC.ipynb

ENSO data(GC)

Notebook: http://git.real-ai.cn/realseries/realseries/blob/causality_branch/notebooks/GC.ipynb